选择特殊符号
选择搜索类型
请输入搜索
等离子体态称为物质的第四态,其性质与固体、液体和气体大不相同,以其特有的方式与自身、电磁场和周围环境相互作用。例如氘(重氢)在气体放电管中形成的等离子体,在磁场作用下能脱离管壁,并有可能达到产生聚变的高温,是研究受控热反应的重要途径。等离子体还有许多其它技术应用,例如磁流体发电、飞船的等离子体推进、同位素分离、无线电通讯、等离子体化学、气体激光以及各种气体放电、等离子体喷涂、焊接、切割等。 2100433B
等离子体聚合物在结构上与普通的聚合物显著不同,它能形成含有活性基团的高度交联的网络结构,从而具有良好的均匀性及对基质的附着性[1,2].有关采用等离子体聚合膜的TSM传感器的报道不多[3,4],本室已...
等离子体又叫做“电浆”,是由部分电子被剥夺后的原子及原子被电离后产生的正负电子组成的离子化气体状物质 在人工生成等离子体的方法中,气体放电法比加热的办法更加简便高效,如荧光灯、霓虹灯、电弧焊、电晕放电...
低温等离子体:适合的应用材料的表面清洗活化焊接,油漆,打印,密封,起泡,涂覆及硅化前表面活化处理。气体裂解和高效灭菌加速化学反应产品特点:突破低气压限制,可在大气压下引发等离子体;可对材料连续在线处理...
等离子体电子工程(22)-电晕放电与高压低温等离子体
等离子体电子工程(22)-电晕放电与高压低温等离子体
看似“神秘”的等离子体,其实是宇宙中一种常见的物质,在太阳、恒星、闪电中都存在等离子体,它占了整个宇宙的99%。21世纪人们已经掌握和利用电场和磁场产生来控制等离子体。最常见的等离子体是高温电离气体,如电弧、霓虹灯和日光灯中的发光气体,又如闪电、极光等。金属中的电子气和半导体中的载流子以及电解质溶液也可以看作是等离子体。在地球上,等离子体物质远比固体、液体、气体物质少。在宇宙中,等离子体是物质存在的主要形式,占宇宙中物质总量的99%以上,如恒星(包括太阳)、星际物质以及地球周围的电离层等,都是等离子体。为了研究等离子体的产生和性质以阐明自然界等离子体的运动规律并利用它为人类服务,在天体物理、空间物理、特别是核聚变研究的推动下,近三、四十年来形成了磁流体力学和等离子体动力学。
等离子体由离子、电子以及未电离的中性粒子的集合组成,整体呈中性的物质状态。等离子体可分为两种:高温和低温等离子体。等离子体温度分别用电子温度和离子温度表示,两者相等称为高温等离子体;不相等则称低温等离子体。低温等离子体广泛运用于多种生产领域。例如:等离子电视,婴儿尿布表面防水涂层,增加啤酒瓶阻隔性。更重要的是在电脑芯片中的蚀刻运用,让网络时代成为现实。
高温等离子体只有在温度足够高时发生的。恒星不断地发出这种等离子体,组成了宇宙的99%。低温等离子体是在常温下发生的等离子体(虽然电子的温度很高)。低温等离子体可以被用于氧化、变性等表面处理或者在有机物和无机物上进行沉淀涂层处理。
等离子体(Plasma)是一种由自由电子和带电离子为主要成分的物质形态,广泛存在于宇宙中,常被视为是物质的第四态,被称为等离子态,或者“超气态”,也称“电浆体”。等离子体具有很高的电导率,与电磁场存在极强的耦合作用。等离子体是由克鲁克斯在1879年发现的,1928年美国科学家欧文·朗缪尔和汤克斯(Tonks)首次将“等离子体”(plasma)一词引入物理学,用来描述气体放电管里的物质形态[1]。严格来说,等离子体是具有高位能动能的气体团,等离子体的总带电量仍是中性,借由电场或磁场的高动能将外层的电子击出,结果电子已不再被束缚于原子核,而成为高位能高动能的自由电子。
等离子体是物质的第四态,即电离了的“气体”,它呈现出高度激发的不稳定态,其中包括离子(具有不同符号和电荷)、电子、原子和分子。其实,人们对等离子体现象并不生疏。在自然界里,炽热烁烁的火焰、光辉夺目的闪电、以及绚烂壮丽的极光等都是等离子体作用的结果。对于整个宇宙来讲,几乎99.9%以上的物质都是以等离子体态存在的,如恒星和行星际空间等都是由等离子体组成的。用人工方法,如核聚变、核裂变、辉光放电及各种放电都可产生等离子体。分子或原子的内部结构主要由电子和原子核组成。在通常情况下,即上述物质前三种形态,电子与核之间的关系比较固定,即电子以不同的能级存在于核场的周围,其势能或动能不大。
普通气体温度升高时,气体粒子的热运动加剧,使粒子之间发生强烈碰撞,大量原子或分子中的电子被撞掉,当温度高达百万开到1亿开,所有气体原子全部电离。电离出的自由电子总的负电量与正离子总的正电量相等。这种高度电离的、宏观上呈中性的气体叫等离子体。
等离子体和普通气体性质不同,普通气体由分子构成,分子之间相互作用力是短程力,仅当分子碰撞时,分子之间的相互作用力才有明显效果,理论上用分子运动论描述。在等离子体中,带电粒子之间的库仑力是长程力,库仑力的作用效果远远超过带电粒子可能发生的局部短程碰撞效果,等离子体中的带电粒子运动时,能引起正电荷或负电荷局部集中,产生电场;电荷定向运动引起电流,产生磁场。电场和磁场要影响其他带电粒子的运动,并伴随着极强的热辐射和热传导;等离子体能被磁场约束作回旋运动等。等离子体的这些特性使它区别于普通气体被称为物质的第四态。
在宇宙中,等离子体是物质最主要的正常状态。宇宙研究、宇宙开发、以及卫星、宇航、 能源等新技术将随着等离子体的研究而进入新时代。
《等离子体处理装置及调节基片边缘区域制程速率的方法》涉及半导体制造领域,尤其涉及一种等离子体处理装置及调节基片边缘区域制程速率的方法。
图1是现有技术(截至2012年9月)的等离子体处理装置的结构示意图;
图2是根据《等离子体处理装置及调节基片边缘区域制程速率的方法》一个具体实施例的等离子体处理装置的结构示意图;
图3是根据《等离子体处理装置及调节基片边缘区域制程速率的方法》另一具体实施例的等离子体处理装置的结构示意图;
图4是根据《等离子体处理装置及调节基片边缘区域制程速率的方法》又一具体实施例的等离子体处理装置的结构示意图;
图5是根据《等离子体处理装置及调节基片边缘区域制程速率的方法》还一具体实施例的等离子体处理装置的结构示意图;
图6是根据《等离子体处理装置及调节基片边缘区域制程速率的方法》一个具体实施例的第一射频电源和第二射频电源的相位示意图。
|
|
|
|
|
|