选择特殊符号
选择搜索类型
请输入搜索
正文
见水压力。
静水压力就是我们通常说的pgh动水压力是由于水质点的运动产生的。像波浪的水质点通常是做圆形运动或者椭圆形运动,由于水质点具有加速度,而在其周围产生正压或者负压,导致产生了除了净水压力之外的额外的压力,...
给水管道水压强度实验的质量要求是: GB50242-2002的4.2.1规定:“室内给水管道的水压试验必须符合设计要求。当设计没有注明时,各种材质的给水管道系统试验压力均为工作压力的1.5倍,但不得...
给水管道水压强度实验的质量要求是:GB50242-2002的4.2.1规定:“室内给水管道的水压试验必须符合设计要求。当设计没有注明时,各种材质的给水管道系统试验压力均为工作压力的1.5倍,但不得小于...
试验记录-给水管道水压强度
给水管道水压强度 试验记录表 编号: 工程名称 三利莫利斯酒店 725 样板间 装饰工程 施工单位 试验部位 725样板间给水管 试验时间 试验要求 缓缓升压至 1.3MPa稳压 10分钟 ,降至工作压力 0.4MPa并保持 24小时 ,外观检查 不渗不漏 试验记录 2010年 8月 20日 8时 15分至 2007年 9月 21日 8时 15分,检验合格并符合设 计要求。 试验结论 施工单位 试验员 施工单位 质量负责人 建设单位 验收人 建设单位 验收人
注浆止水技术在高水压强渗透地层盾尾刷更换施工中的应用
盾尾密封的完整性和可靠性对于盾构施工安全极其重要。当盾尾刷出现损坏时,要及时进行更换,而进行盾尾刷更换的关键在于地层中地下水的封堵。文章以南京纬三路过江通道N线工程为例,结合高水压强渗透地层盾尾刷更换施工的特点和要求,采用了改进的注浆止水技术。一是通过加强同步注浆,形成第一道止水体系;二是采用增设预留孔的两环特殊管片,对盾尾区域进行止水加固;三是在盾构B环注入聚氨酯形成止水带,防止前方泥水舱泥水后窜。通过采取多道措施形成一个厚度大、密实性高、且具有一定强度的完整止水体系,在无水的环境中成功更换了盾尾刷。
静水压强以
式中,
压强的大小通常有两种计算基准:①以完全真空作为基准,这种压强值称为绝对压强。②以当地大气压强作为基准,这种压强值称为相对压强。如果某点的绝对压强值小于大气压强值,则相对压强为负值,称为负压。压强的单位为Pa。
液体容器底、内壁、内部的压强称为液体压强,简称液压。
1.液体压强产生的原因是由于液体受重力的作用。若液体在失重的情况下,将无压强可言。
2.由于液体具有流动性,它所产生的压强具有如下几个特点
(1)液体除了对容器底部产生压强外,还对“限制”它流动的侧壁产生压强。固体则只对其支承面产生压强,方向总是与支承面垂直。
(2)在液体内部向各个方向都有压强,在同一深度向各个方向的压强都相等。
(3)计算液体压强的公式是p=ρgh。可见,液体压强的大小只取决于液体的种类(即密度ρ)和深度h,而和液体的质量、体积没有直接的关系。
(4)密闭容器内的液体能把它受到的压强按原来的大小向各个方向传递。
3.容器底部受到液体的压力跟液体的重力不一定相等。容器底部受到液体的压力F=pS=ρghS,“ρgSh”是这一液柱的重力。因为液体有可能倾斜放置。所以,容器底部受到的压力其大小可能等于,也可能大于或小于液体本身的重力。
液体压强原理(帕斯卡定律)的产生帕斯卡发现了液体传递压强的基本规律,这就是著名的帕斯卡定律.所有的液压机械都是根据帕斯卡定律设计的,所以帕斯卡被称为“液压机之父”。
在几百年前,帕斯卡注意到一些生活现象,如没有灌水的水龙带是扁的.水龙带接到自来水龙头上,灌进水,就变成圆柱形了.如果水龙带上有几个眼,就会有水从小眼里喷出来,喷射的方向是向四面八方的。水是往前流的,为什么能把水龙带撑圆?
通过观察,帕斯卡设计了“帕斯卡球”实验,帕斯卡球是一个壁上有许多小孔的空心球,球上连接一个圆筒,筒里有可以移动的活塞.把水灌进球和筒里,向里压活塞,水便从各个小孔里喷射出来了,成了一支“多孔水枪”。
帕斯卡球的实验证明,液体能够把它所受到的压强向各个方向传递.通过观察发现每个孔喷出去水的距离差不多,这说明,每个孔所受到的压强都相同。
帕斯卡通过“帕斯卡球”实验,得出著名的帕斯卡定律:加在密闭液体任一部分的压强,必然按其原来的大小,由液体向各个方向传递。
我们知道,物体受到力的作用产生压力,而只要某物体对另一物体表面有压力,就存在压强,同理,水由于受到重力作用对容器底部有压力,因此水对容器底部存在压强。液体具有流动性,对容器壁有压力,因此液体对容器壁也存在压强。
在初中阶段,液体压强原理可表述为:“液体内部向各个方向都有压强,压强随液体深度的增加而增大,同种液体在同一深度的各处,各个方向的压强大小相等;不同的液体,在同一深度产生的压强大小与液体的密度有关,密度越大,液体的压强越大。”
一、同种液体
1.向各个方向都有压强
2.同一深度处,压强一致
3.深度越深,压强越大
二、不同液体
同一深度,密度越大,压强越大
公式:p=ρgh 式中g=9.8N/kg 或g=10N/kg,h的单位是m,ρ的单位是kg/m³,压强p的单位是Pa。
公式推导:
压强公式均可由基础公式:p=F/S推导
p=F/S=G/S=mg/S=ρVg/S=ρShg/S=ρhg=ρghF=ρ液gh,h指的是液面下某处到自由液面(与大气接触的液面)的竖直距离。
液体内部的压强只与液体的深度和密度有关,与液体的质量、体积、重力、形状、底面积等无关。
液体压强的测量仪器叫“U形管压强计”,利用液体压强公式p=ρhg,h为两液面的高度差,计算液面差产生的压强就等于液体内部压强。
公式:F1/S1=F2/S2
非直立柱体时液体对容器底部的压强,可用p=ρgh计算,不能用p=F/S计算;非直立柱体时液体对容器底部的压力,可用F=pS=ρghS计算。因为同学对这个问题疑问较多,对p=F/S和p=ρgh两个公式简单说明如下:由P=F/S是可以推导出液体压强公式 p=ρgh,但这是在液体容器为规则均匀的柱体容器的前提下推导出来的,所以公式 p=F/S的使用条件仅适用于这种柱体容器(这一点与固体不同,固体间的压强总是可以用p=F/S来计算)。但 p=ρgh这个公式根据液体本身的特性(易流性,连通器原理、帕斯卡定律等)可以推广到任意形状的容器,只要是连通的密度均匀的液体都可以用。其实液体内部压强公式的推导完全可以不用公式p=F/S来推导,而是用更加普遍、更加一般的方法——质量力的势函数的积分来推导,只是这已超出中学的教学大纲了。由于液体的易流性和不可拉性,静止的液体内部没有拉应力和切应力,只能有压应力(即压强),在静止的液体内部任意取出微小一个六面体,这个六面体在六个面的压力和本身的重力共同作用下处于平衡状态,设想这个六面体无限缩小时,其重力可以忽略不计,就得出作用在同一点上的各个方向的压强相等,即压强仅仅与位置坐标有关,而与方位无关。即 P=f(x,y,z)。再设想坐标x-O-y处在水平面上,z为竖直向下的坐标。液体的压强是由液体的质量力引起的,当液体对地球来说是静止时,就是由重力引起的,液体质量m=1的液体单位质量力在各坐标的分量为X=0、Y=0、Z=g,液体内部的压强与质量力的微分关系为dp=ρ(XdxYdy Zdz)=ρ(0*dx 0*dy gdz)=ρgdz (从本方程看出在同一水平面上没有压强差,水平面是等压面,即前后左右压强都相等,压强仅在重力方向上有变化)。从水面z=0到水深z=h积分上式得 p=ρgh。
同一深度,密度越大,压强越大。
液体内部压强:p=ρgh(式中ρ表示液体密度,g表示重力加速度,h表示液面下某处到自由液面(与大气接触的液面)的竖直距离)
如果题目中没有明确提出g等于几,应用g=9.8N/kg,再就是题后边基本上都有括号,括号的内容就是g和ρ的值。
公式推导:压强公式均可由基础公式:p=F/S推导
p液=F/S=G/S=mg/S=ρ液Vg/S=ρ液Shg/S=ρ液hg=ρ液gh。
由于液体内部同一深度处向各个方向的压强都相等,所以我们只要算出液体竖直向下的压强,也就同时知道了在这一深度处液体向各个方向的压强。这个公式定量地给出了液体内部压强地规律。
深度是指液面下某处到自由液面(与大气接触的液面)的竖直距离,液体的压强与深度和液体的密度有关,与液体的质量无关。
液体压强产生原因:受重力、且有流动性。
影响液体压强的因素:深度、液体的密度(与容器的形状,液体的质量、体积无关)。
液体压强的测量的仪器叫U形管压强计,利用液体压强公式p=ρgh,计算液面差产生的压强就等于液体内部压强。
静止液体作用在每单位受压面积上的压力称为静水压强(hydrostatic pressure)
二个特性
(1)静水压强的方向垂直并且指向受压面(Vertical point to acted surface.)
(2)静止液体内任一点沿各方向上的静水压强大小都相等(The pressures from every direction are equal in size. )