选择特殊符号
选择搜索类型
请输入搜索
超大型冷却塔属于典型的风敏感结构,我国冷却塔设计规范的风荷载条款仅给出适用于165m高度以下的单塔单一工况风振系数和环向对称风压系数,缺少相应的等效静力风荷载模型和气动抗风措施条款。本项目结合风洞试验、理论推导和数值模拟方法进行了以下三个方面的研究工作:(1)设计制作了可同步测压测振的超大型冷却塔完备气弹模型,进行了典型场地和群塔组合下刚体测压和气弹测振风洞试验,基于试验结果分析了超大型冷却塔表面风荷载随机特性(非高斯、非平稳和时频域特性)和自激力效应。并结合CFD大涡模拟方法,揭示了超大型冷却塔表面风场流动机理和绕流及尾迹特性,建立了基于保证率和相关性的超大型冷却塔极值风压模型,并给出了划分冷却塔表面高斯与非高斯区域的判别标准。(2)基于模态加速度和荷载-响应相关方法提出了能完全考虑背景、共振及两者之间耦合项的超大型冷却塔风振精细化频域计算方法“一致耦合法”,揭示了复杂环境下超大型冷却塔风振自激和耦合作用机理,探讨了特征尺寸、阻尼比和周边干扰对超大型冷却塔风振机理的影响规律,建立了超大型冷却塔结构自身构型和各种可能破坏模式之间的内在联系,进而提出了考虑多种失效模式和屈曲失稳形态的单一和多目标等效静力风荷载数学模型。(3)在此基础上,提出了超大型冷却塔三种典型气动抗风措施(矩形导风板、弧形导风板和外部进水槽),并进行了相应的物理和数值风洞试验模拟,对比研究了不同气动措施对超大型冷却塔表面平均和脉动风荷载、风致响应、局部和整体稳定性及极限承载性能的影响。本项目的试验方法、理论方法和研究成果可为国内外此类超大型冷却塔抗风设计和气动措施选取提供科学参考依据,相关研究成果已成功应用到国内宁夏马莲台电厂超大型冷却塔(170m)、京能盛乐热电厂超大型冷却塔(180m)、内蒙古土右旗电厂超大型冷却塔(210m)、山西介休电厂超大型直筒-锥段型钢结构冷却塔(180m)和陕西彬长电厂特大型冷却塔(210m)等国内重大工程抗风设计,显著改进和完善了我国超大型冷却塔结构抗风设计的可靠性及合理性。研究成果发表期刊及学术论文27篇,其中SCI收录10篇,EI收录15篇,参加国际学术会议1次,国内学术会议3次,申请软件著作权1项。 2100433B
我国冷却塔建设日趋高大化(塔高突破世界纪录200m)和复杂化(群塔组合多变,周边构筑物干扰显著),指导结构抗风设计的相关规范缺少与之匹配的等效静力风荷载模型,仅给出165m高度以下单塔、单一风振系数经验值。事实上,超大型冷却塔风振具有多荷载形态、多振型参与和多耦合效应特征,且在复杂环境中其共振和耦合效应愈加突出,相应的等效静力风荷载计算理论及数学模型亟需建立。为此,拟研制可同步测压及测振的冷却塔完备气弹模型,实现从低风速线性振动到高风速失稳破坏试验的全过程,获取并分析考虑自激效应的表面动态风荷载随机特性;建立超大型冷却塔风振耦合作用精细化分析方法,并结合风洞试验揭示复杂环境中超大型冷却塔风振耦合、自激机理;提出具有原创性的考虑多种失效模式和屈曲失稳形态的等效静力风荷载数学模型。最终形成超大型冷却塔抗风设计理论与实用方法,初步探索强风作用下超大型冷却塔动力灾变全过程试验模拟方法和理论模型。
中国规定的基本风压w0 以一般空旷平坦地面、离地面10米高、风速时距为10分钟平均的最大风速为标准,按结构类别考虑重现期(一般结构重现期为30年,高层建筑和高耸结构为50年,特别重要的结构为100年)...
门钢规范前面有该规范的适用条件,除此之外用荷载规范,一家之言^_^
4.5米是每榀框架受风荷载的横向宽度,一般是建筑物每间的宽度。
超大型冷却塔施工全过程风荷载频域特性分析
以国内在建世界最高220m超大型冷却塔为对象;基于大涡模拟(Largeeddysimulation;LES)方法获得施工全过程冷却塔周围流场和风荷载时程;并将成塔风压分布结果与规范及实测曲线进行对比验证了数值模拟的有效性;在此基础上;对比分析了施工全过程塔筒平均与脉动风压根方差分布特性;系统对比研究了施工全过程风荷载频域特性;主要包括:典型测点风压功率谱特性、升/阻力系数功率谱、典型测点间环向相干性和升/阻力系数竖向相干性;并基于最小二乘法拟合给出随高度变化的典型测点功率谱计算公式;研究表明;施工期与成塔的脉动风荷载能量均集中在低频区;其中塔筒中部脉动风荷载在低频区能量较其他位置弱;随着施工高度的增加:脉动风荷载和层阻力系数功率谱密度函数均呈先减小后增大的趋势;升力系数功率谱在塔筒中下部谱值较大而上部较小;测点脉动风荷载环向相干性以及升/阻力系数竖向相干性均逐渐减弱;主要结论可供此类大型冷却塔施工期设计风荷载取值参考;
同济讲稿(高层建筑风荷载,风振响应,等效静风荷载_)
1 七、高层建筑(高耸结构)的顺风向和横风向振动 I. 概述 顺风向和横风向 顺风向 ---抖振机制 横风向 ---机制复杂(高层建筑:紊流 + 尾流 + 气动弹性) 研究方法 顺风向: (1) 平均风压(整体型系数) ----准定常风力 ----随机振动方法计算 --- 振动响应 (2) 同步测压 ----脉动风力分布 ---随机振动方法计算 ---振动响应(不 能应用于格构式高耸结构) (3) 高频动态测力天平 ---一阶广义风荷载 ---振动响应计算 (4) 气动弹性模型试验 ----直接获得振动响应 横风向: (1) 同步测压 ----脉动风力分布 ---随机振动方法计算 ---振动响应(不 能应用于格构式高耸结构) (2) 高频动态测力天平 ---一阶广义风荷载 ---振动响应计算 (3) 气动弹性模型试验 ----直接获得和振动响应 II、高层建筑风压分布特性 2.1 概述
批准号 |
50408035 |
项目名称 |
大跨度桥梁台风风环境实测与风振失效机理研究 |
项目类别 |
青年科学基金项目 |
申请代码 |
E0810 |
项目负责人 |
赵林 |
负责人职称 |
教授 |
依托单位 |
同济大学 |
研究期限 |
2005-01-01 至 2007-12-31 |
支持经费 |
24(万元) |
所谓复杂结构是指构型复杂、由多种材料组成、工作环境复杂的结构,例如飞行器的发动机燃烧室就属这类结构。为了减轻质量,增加内部空间,提高飞行器的服役能力,燃烧室多采用薄壁结构,其材料参数非单一,结构形式复杂。在加热过程中,由于燃烧室不同位置处受热的情况不同,因此在其表面会产生较大的温度梯度,从而产生热应力,进一步影响其动力学特性。另一方面,燃烧室内部的火焰筒结构在温度场的作用下会产生热变形,进而会影响火焰筒的冷却与燃烧,温度升高所产生的热载荷也会降低结构的横向刚度,甚至可能导致结构的屈曲。因此研究这类结构在热环境下的振动特性对于结构的安全性和稳定性具有重要的意义。
国内外学者围绕结构在热环境下的振动问题从理论和试验等方面开展了诸多研究。针对结构的气动弹性问题开展了理论研究,期间的许多研究成果成为热气动弹性的基础。从理论推导和数值模拟的角度研究了铁木辛柯梁在热环境状态下的振动特性,求解过程中考虑了轴向温度变化以及随温度变化的弹性模量的影响。介绍热环境下结构的测试方法技巧,并利用铝板搭建了热振测试平台,得到铝板在热环境下动力学参数变化的规律。利用中空翼结构进行热环境下的振动特性研究,得到了高达900℃热环境下结构的模态参数。研究旋转结构在热环境下的振动问题,指出结构的固有频率同时受到温度场和离心刚度的共同影响。针对热、声效应的共同作用环境,对壁板颤振问题进行研究。围绕高超声速中流场-热-结构耦合的建模、载荷、响应等问题进行研究。使用有限元建模与分析方法分析再入飞行器的热防护系统,包括其热应力、热震颤等。使用多物理场有限元法对火箭喷嘴在点火阶段的结构热响应问题进行研究。围绕复合材料结构在热环境中振动问题的研究进行得也较多,而针对多种子结构组成的复杂结构,其材料参数非单一,对其在加热过程中动力学参数变化规律的研究稍显不足。若能基于数值模拟和试验的方法得到该类复杂结构在热环境下的动力学参数变化规律,将具有十分重要的意义。研究以冲压发动机的燃烧室为例,首先从理论上分析了影响结构热刚度矩阵的主要因素。然后从数值模拟角度研究了不同工况下结构动力学参数随温度的变化规律,重点分析了弹性模量、热应力以及几何非线性的影响。最后完成了燃烧室热模态试验的设计与结果分析,研究了不同工况下结构振型、固有频率及模态阻尼随温度的变化规律,并验证了数值模拟方法的可行性。
(1)热环境下的应力描述
在已知瞬态温度场的基础上计算每一时刻各点的温度初应变ε0=α(T-T0),α为热膨胀系数。对于弹性体结构,在有约束无法自由热膨胀或在外载荷作用下会产生应变。因此,当弹性结构存在初应变的情况下,其总应变为温度初应变和弹性应变两者之和,即:ε=ε0 D-1σ
上式可以改写为:σ=D(ε-ε0)
式中:σ为热应力,D为弹性矩阵。
(2)结构热刚度矩阵的形成
考虑温度效应的情况下,结构初始刚度矩阵主要受两种状态的影响而发生变化:升温使得结构材料的弹性模量E发生变化;结构升温后内部存在的温度梯度引起了热应力。针对上述两种状态,以飞行器燃烧室结构为例,分析初始刚度矩阵的变化。对于第一种情况,当燃烧室所处热环境异常严酷,结构表面的温度值和非均匀性都较高时,需考虑几何非线性影响,记升温后结构的刚度矩阵为:KT=∫BTDTBdΩ
式中:B=BL BN为几何矩阵,包括线性和非线性两个部分;DT为与材料弹性模量E和泊松比μ相关的弹性矩阵,温度变化时DT也相应发生变化。则:KT=KL KN
式中:初始刚度矩阵KL=∫BLTDTBLdΩ;几何非线性刚度矩阵KN=∫ΩBLTDTBN BNTDTBNdΩ。对于第二种情况,即当结构升温后内部存在的温度梯度引起了热应力时,需要在结构的刚度矩阵中附加一初始应力刚度矩阵。记结构的初始应力刚度矩阵为Kσ=-∫GTгGdΩ,其中G为形函数矩阵,г为应力矩阵。当考虑结构的几何非线性(KN)时,结构总的热刚度矩阵为:KT=KL KN Kσ
(3)考虑温度效应的结构热模态分析方法
在稳态温度场下,无阻尼系统的自由振动方程为Mx Kx=0→(K-ω2M)φ=0
式中:K为热效应下修正的热刚度矩阵;φ为n阶向量;ω为与向量φ对应的振动频率。
利用有限元分析的方法开展数值模拟是研究结构热环境状态下振动特性的有效途径,此处仍以发动机燃烧室结构为例。该发动机燃烧室结构主要分为前段、中段、后段三部分,中段和后段主要由内外两层组成,且中段的内外层通过复杂环状结构和刚性单元连接而成,各部分的主要材料类型分别为30CrMnSiA,GH4099,TA15。建模过程中采用的单元有壳单元、实体单元和刚性单元,其有限元模型如图1所示。
针对要研究的问题,考虑到发动机燃烧室结构在试车状态下所处的最高温度不超过600℃,设计了5种计算工况,未加热模态和300,400,500,600℃加热模态分别对应工况1—5。利用商用软件Abaqus对结构进行仿真计算,热环境下的模态计算需要考虑温度场以及随温度变化的材料参数,如弹性模量、泊松比、线膨胀系数等,计算所用到的材料参数见表1和表2。在计算过程中,缺失的一些参数将根据计算的温度场由软件自动插值获取。相比未加热状态模态计算,热模态计算的主要过程是根据结构所处的温度场首先求解结构在高温下的热应力,然后以此热应力为预应力,并结合随温度变化的材料参数求解结构在热环境下的模态。燃烧室仿真前三阶频率随温度变化曲线如图2所示,可以看出,随着温度的升高,前三阶的频率呈现下降趋势。这主要是由于加热引起材料的弹性模量下降,进而降低结构的刚度,使得结构固有频率下降。未加热状态计算出来的前三阶模态振型如图3所示,对所有工况仿真计算的结果进行对比分析可以发现,各种工况下的模态振型均未发生变化,而发生变化的主要是模态频率。
冲压发动机燃烧室是一种复杂结构,分析其热振特性时不仅要考虑弹性模量的变化,还要考虑热应力分布以及几何非线性因素的影响。文中完成了燃烧室结构的数值模态分析,并建立了热振试验平台,完成了模态试验分析,主要结论如下所述。
1)对比数值分析和实验结果,燃烧室结构振型及模态频率变化规律具有一致性,表明了实验有效,数值模拟正确。
2)对自由-自由状态的燃烧室结构,数值分析和实验结果均表明,随着温度升高,结构模态频率呈下降趋势。实验结果表明,结构的模态阻尼呈升高—下降—升高的趋势,表明结构的耗能特性受温度影响。
3)数值分析和实验结果均表明,在均匀加热状态下,温度的变化不影响结构的模态振型。对于自由-自由状态的燃烧室结构,在加热的过程中,影响模态频率下降的主要因素是弹性模量的变化,热应力分布和几何非线性的影响可以忽略。
批准号 |
50278069 |
项目名称 |
大跨度拱桥抗风失效机理及风振控制方法研究 |
项目类别 |
面上项目 |
申请代码 |
E0804 |
项目负责人 |
葛耀君 |
负责人职称 |
教授 |
依托单位 |
同济大学 |
研究期限 |
2003-01-01 至 2005-12-31 |
支持经费 |
22(万元) |