选择特殊符号
选择搜索类型
请输入搜索
本书包括城市水务管理概论、城市供水系统、城市排水系统、城市防洪排涝工程与管理、城市用水与节水管理、城市水环境保护与生态系统建设、城市水务管理现代化等7篇,共16章。可供水利(务)系统领导和管理人员及高校学生参考。
前言
第1篇 城市水务管理概论
第1章 城市管理的若干基本问题
城市水务管理的内涵
城市水务管理的理念
城市水务管理的目标与主要任务
城市水务管理的保障措施
国内外城市水务管理的实践
第2篇 城市供水系统
第2章 城市供水水源及取水工程
城市供水水源的种类与特点及选择
城市供水与区域供水
地表水的取水构筑物
地下水的取水构筑物 2100433B
《大设计》无所不在。在会议室和战场上;在工厂车间中也在超市货架上;在自家的汽车和厨房中;在广告牌和食品包装上;甚至还出现在电影道具和电脑图标中。然而,设计却并非只是我们日常生活环境中的一种常见现象,它...
本书分为上篇“平面构成”和下篇“色彩构成”两个部分,每一部分的最后章节选编了一些本校历年来学生的优秀作品作为参考,图文并茂、深入浅出。此外,本书最后部分附有构成运用范例及题型练习,可供自考学生参考。本...
本书从招贴的起源、发展到现代招贴设计的运用,阐述了招贴的分类、功能及设计形式等基本知识。全书以图文并茂的形式讲述了如何将理论知识运用到实际的招贴设计中。全文内容基础,表述深度恰当,以简单的理论知识引领...
《地下工程测量》内容简介
本书结合作者多年教学、科研经验及工程实践,较系统地介绍了地下工程测量的基本理论和基本方法,从理论和实践两个角度帮助读者提高分析和解决地下工程领域测绘的能力。本修订版在传统测量技术的基础上,新增测绘新技术元素,操作适用性更强,新的地铁工程测量一章更具有针对性。全书内容丰富,具有一定的深度和广度,充分反映了地下工程测量最新技术及其应用。
非洲地下水
3.2 蓄水层生产率 地下水资源的可获得性和地下水的总储量一样重要,决定了地下水能够支持国家和社 会适应气候变化和人口增长的时间长短( Calow et al 2010)。地下水是可使用和抽取的,一 般通过钻井, 而井的产量将限制地下水能被提取的速率。 对于安装手泵的社区供水, 水井供 水产量必须保持> 0.1升 /秒,最好是 0.3升 /秒。集约灌溉农业需要更高的水井产量。例如, 在美国中部平原所用的这种类型的标准中心枢纽灌溉器将需要能够提供大约 50 升 /秒的水 井。其它灌溉面积较小的农业系统不需要这么高的产量, 但是对于商业灌溉计划典型需要水 井供应量> 5 升 /秒。同样的,依赖于个人水井的城镇供应量能够维持至少 5 升 /秒的产量。 表 1 非洲地下水储量评估 国家 地下水储量 (km3) 最佳估计值 范围 a 阿尔及利亚 91900 56000-243000 安哥拉 1710
正文
补给量计算 主要计算:①降水入渗补给量,是潜水分布区的主要补给量。通常用降水量、降水入渗补给系数和计算区面积相乘求得。②灌溉水入渗补给量,用灌溉季节的灌溉定额、灌溉水入渗补给系数和计算区面积相乘求得。③地表水入渗补给量,指河、渠、湖、塘等地表水体中的水对地下水的补给量。河、渠对地下水的补给量可用开采区段河渠上下游断面实测的流量之差估算。湖、塘水对地下水的补给量可用水量平衡公式大致计算。两者也可根据不同的具体条件,用地下水动力学公式进行计算。④越流补给量,根据相邻含水层之间弱透水层的水力坡度和垂向渗透系数,用达西定律计算开采状态下的越流补给量。⑤地下水流入量,这是从上游边界流进水源地含水层的地下径流量,一般按达西定律计算。
储存量计算 主要有:①容积储存量,指含水层空隙所储存的重力水体积。由含水层体积与给水度相乘求得。对潜水和承压水都适用。②弹性储存量,指承压水面降到含水层顶板时承压含水层中弹性释放出来的水量。由释水系数、承压水头高度和承压含水层计算面积相乘求得。
排泄量计算 主要计算:①开采量。常用的公式有:裘布衣(单井稳定流)公式,即
潜水时
承压水时
泰斯(单井非稳定流)公式,即
M.S.汉图什和C.E.雅各布越流情况下的单井非稳定流公式,即
式中Q为单井开采量 (米3/日);K为含水层渗透系数(米/日);δp为抽水前潜水含水层的厚度(米);δ为承压水含水层厚度(米);Δh为抽水井或观测井的水位降深,即抽水前的水位和抽水时水位的差值(米);R为抽水井影响半径(米);r为抽水井井孔半径或计算点与抽水井的距离(米);T为含水层导水系数(米2/日);W(u)为泰斯井函数;为越流井函数。群井抽水时,可根据相应条件下的单井公式,按叠加原理计算。此外,地下水水量平衡方程式也是计算开采量的重要公式。②潜水蒸发量。见潜水蒸发。③越流排泄量。计算方法和越流补给量相同。④地下水流出量。计算方法和地下水流入量相同。
水位计算 前述计算开采量的公式,都可用来计算地下水水位。当开采量Q已知时,可算出水位降深Δh值。开采前的水位减去水位降深,即为开采时的水位。
地下水污染计算 根据地下水水质数学模型计算。
参数计算 主要有:①渗透系数。主要根据稳定流或非稳定流抽水试验所得到的水位(或降深)和流量资料,利用裘布衣公式、泰斯公式等求出。②导水系数。用渗透系数乘以含水层厚度即得。③给水度。确定方法见给水度。④释水系数。是表示承压水含水层释水能力的数量指标,也称贮水系数或弹性给水度。其值为单位面积的承压水含水层,当承压水面下降一个单位长度时所能释出的水量。但是承压含水层的释水原因与潜水含水层的给水原因不同,前者不是由于重力而是由于水头降低造成的含水层的压缩和水的弹性膨胀,故称弹性释水。弹性释水是瞬时完成的,没有时间迟后。它的确定方法主要用非稳定流抽水试验资料,根据泰斯公式用配线法或图解等方法求出。 20世纪60年代中期以来,地下水计算的方法和手段有较大的进展,电子计算机得到广泛的应用,除了解析法外,有限差分法、有限单元法、边界积分法等越来越多地进入地下水计算领域,解决了许多复杂条件下的地下水计算问题,成为行之有效的计算方法。
参考书目
薛禹群、朱学愚编著:《地下水动力学》 ,地质出版社,北京,1979。
张蔚榛主编:《地下水非稳定流计算和地下水资源评价》,科学出版社,北京,1983。
内容简介
《武汉大学百年名典:地下水非稳定流计算和地下水资源评价》系统地介绍了松散岩层中地下水非稳定流计算和地下水资源评价的理论与方法。全书共分7章,依次介绍了地下水资源的概念及地下水运动和溶质运移的基本微分方程,不同水文地质条件下单井抽水和群井抽水或注水时地下水非稳定流计算方法,河渠水位变动影响下附近地下水动态的计算方法,降雨、灌水入渗和潜水蒸发影响下地下水非稳定流计算问题,地下水非稳定流的数值计算方法,以及地下水资源评价的多年均衡和非稳定流计算方法,相关部分还有相应的图表和例题。 《武汉大学百年名典:地下水非稳定流计算和地下水资源评价》可以供水文地质、农田水利、地下水文,工程勘察等专业的工程技术人员和高等学校相关专业的教师参考,也可以作为高等学校相关专业研究生的教材。 张蔚榛,男,(1923-2012年),出生于河北省唐山市丰南区,是我国著名的水利学家、教育家,国际知名的地下水及农田灌溉、排水专家,武汉大学教授,中国工程院院士。 张蔚榛先生1941年就读于北京大学工学院土木工程系,毕业后留校任教。1947年,在担任《初等流体力学》课程辅导工作中对水利工程产生兴趣。1951年,因业务能力出众,被首批选派往前苏联深造,师从号称“水利土壤改良之父”的通讯院士考斯加可夫教授。1955年以优异的成绩取得副博士学位,其学位论文得到前苏联地下水渗流计算学术界的高度评价,该学位论文的主要内容被收录入前苏联科学院出版的《灌溉对地下水动态的影响》论文集中。1955年回国后由国家教育部分配至原武汉水利学院从事教学科研工作,1956年加入中国共产党,1981年被评为我国首批博士研究生导师,1989年荣获国务院嘉奖,1997年当选中国工程院...(展开全部) 张蔚榛,男,(1923-2012年),出生于河北省唐山市丰南区,是我国著名的水利学家、教育家,国际知名的地下水及农田灌溉、排水专家,武汉大学教授,中国工程院院士。 张蔚榛先生1941年就读于北京大学工学院土木工程系,毕业后留校任教。1947年,在担任《初等流体力学》课程辅导工作中对水利工程产生兴趣。1951年,因业务能力出众,被首批选派往前苏联深造,师从号称“水利土壤改良之父”的通讯院士考斯加可夫教授。1955年以优异的成绩取得副博士学位,其学位论文得到前苏联地下水渗流计算学术界的高度评价,该学位论文的主要内容被收录入前苏联科学院出版的《灌溉对地下水动态的影响》论文集中。1955年回国后由国家教育部分配至原武汉水利学院从事教学科研工作,1956年加入中国共产党,1981年被评为我国首批博士研究生导师,1989年荣获国务院嘉奖,1997年当选中国工程院院士。 张蔚榛先生长期从事地下水渗流、地下水资源及农田灌溉、排水等方面的学术研究,硕果累累。其成就主要包括: 推导了不同的农田灌排田间工程边界条件下地下水运动计算公式,处于当时的国际领先地位,该套理论公式使得农田灌溉、排水工程的规划设计更具科学性和实用性,该成果获国家教育委员会科技进步二等奖。 科学地概括和统一了地下水资源的概念;在参加华北平原地下水开发利用的研究实践中发展了地下水资源评估理论;推导了复杂地层条件下水井水力学计算方法;提出了“我国北方平原地区地下水的开发应把重点放在开采浅层地下水资源”的论断,对我国华北平原及类似地区的地下水资源合理开发利用起到了重要的指导作用,该研究成果荣获1978年全国科学大会奖。 在我国率先应用势能理论研究饱和-非饱和土壤水分运动,并应用于生产实践,解决了大量灌溉、排水及盐碱地改良中的科学难题,引领了当时农田水利学科的前沿,拓展了农田水利学科的理论体系。 将溶质运移理论应用于盐碱地改良以及控制农田化肥流失等问题的研究,开辟了农田水利学科在环境学方面新的研究方向。对黄、淮、海平原次生盐碱化的治理、生态环境保护等起到了重要作用。为表彰张蔚榛先生在黄、淮、海平原治理中的杰出贡献,于1989年张蔚榛先生被授予国务院二级嘉奖。2100433B
( 1)可开采系数法。在浅层地下水已经开发利用的地区,多年平均浅层地下水实际开采量、地下水位动态特征、现状条件下总补给量等三者之间关系密切相关、互为平衡。首先,通过对区域水文地质条件分析,依据地下水总补给量、地下水位观测、实际开采量等系列资料,进行模拟操作演算,确定出可开采系数,然后,再用类似水文比拟的方法,确定不同类型水文地质分区可采用的经验值。进而计算评价区的地下水可开采量计算式:
Q 可采 =ρQ 总补
式中: Q可采—地下水可开采量;
ρ —可开采系数( ρ≦1);
Q 总补 —地下水总补给量。
对于开采条件良好[单井单位降深出水量大于 20m/(h.m)],地下水埋深大、水位连年下降的超采区, ρ的参考取值范围 0.875~ 1.0;对于开采条件一般[单井单位降深出水量在 5~ 10m/(h.m)],地下水埋深大、实际开采程度较高地区或地下水埋深较小、实际开采程度较低地区, ρ的参考取值范围 0.75~ 0.95;对于开采条件较差[单井单位降深出水量小于 2.5m/(h.m)],地下水埋深较小,开采程度低,开采困难的地区, ρ的参考取值范围 0.6~ 0.7。
( 2)典型年实际开采量法。据实测的地下水位动态资料与调查核实的开采量资料分析,若某一年的地下水经开采后,其年末的地下水位与年初保持不变或十分接近,则该年的实际开采量即为区域开采量。具体计算时,可在允许范围内多选几年,对求出的 Q可采经分析后合理取值。
( 3)扣除不可夺取的天然消耗量法。浅层地下水补给量和消耗量是在地下水的交替转换过程中形成的,且随着自然和人为因素的影响,地下水各均衡项在不断的变化中。充分发挥地下水库的多年调节作用,尽最大可能的把地下水资源提取出来,物尽其用是水资源管理的目的。但是,受水文地质条件的限制和大自然平衡的需要,必有一部分水量被消耗掉,地下水资源量扣除天然净消耗量即为地下水的可开采量。天然净消耗量包括潜水蒸发量、河道排泄量、地下水溢出量和由于下部承压水开采而形成的向下越流排出量等。将现状条件下的多年平均地下水总补给量扣除天然消耗量,即可得到多年平均地下水可开采量。