选择特殊符号

选择搜索类型

热门搜索

首页 > 百科 > 电气百科

共发射极放大器元件作用

共发射极放大器元件作用

1.集电极电源UCC是放大电路的能源

为输出信号提供能量,并保证发射结处于正向偏置、集电结处于反向偏置,使晶体管工作在放大区。UCC取值一般为几伏到几十伏。

2.晶体管V是放大电路的核心元件

利用晶体管在放大区的电流控制作用,即ic = βib的电流放大作用,将微弱的电信号进行放大。

3.集电极电阻RL是晶体管的集电极负载电阻

它将集电极电流的变化转换为电压的变化,实现电路的电压放大作用。RL一般为几千到几十千欧。

4.基极电阻RB以保证工作在放大状态

改变RB使晶体管有合适的静态工作点。RB一般取几十千欧到几百千欧。

5.耦合电容C1、C2起隔直流通交流的作用

在信号频率范围内,认为容抗近似为零。所以分析电路时,在直流通路中电容视为开路,在交流通路中电容视为短路。C1、C2一般为十几微法到几十微法的有极性的电解电容。

查看详情

共发射极放大器造价信息

  • 市场价
  • 信息价
  • 询价

信号放大器

  • TX3920
  • 13%
  • 深圳市泰和安科技有限公司
  • 2022-12-06
查看价格

放大器

  • 放大器
  • 13%
  • 成都三合力科技有限公司
  • 2022-12-06
查看价格

USB放大器

  • USB放大器
  • 13%
  • 焦点安防科技有限公司华中经销
  • 2022-12-06
查看价格

放大器

  • 放大器
  • 13%
  • 四川景尚通讯设备有限公司
  • 2022-12-06
查看价格

放大器

  • 品种:放大器;代号:26401426;
  • HAWE
  • 13%
  • 广州市力行机电设备有限公司
  • 2022-12-06
查看价格

拉曼放大器(RAMAN)

  • 广东2021年2季度信息价
  • 电网工程
查看价格

拉曼放大器(RAMAN)

  • 广东2020年2季度信息价
  • 电网工程
查看价格

拉曼放大器(RAMAN)

  • 广东2019年4季度信息价
  • 电网工程
查看价格

拉曼放大器(RAMAN)

  • 广东2022年3季度信息价
  • 电网工程
查看价格

拉曼放大器(RAMAN)

  • 广东2022年1季度信息价
  • 电网工程
查看价格

放大器

  • 1、放大器 暗装2放大器
  • 1套/台
  • 1
  • 中档
  • 含税费 | 含运费
  • 2022-09-28
查看价格

放大器

  • 放大器
  • 1个
  • 3
  • 不限
  • 中档
  • 含税费 | 含运费
  • 2018-05-31
查看价格

辅助放大器

  • 辅助放大器
  • 3套
  • 3
  • 中高档
  • 含税费 | 含运费
  • 2022-06-08
查看价格

放大器

  • 放大器
  • 1个
  • 2
  • 不限
  • 中档
  • 含税费 | 含运费
  • 2018-06-01
查看价格

放大器

  • 放大器
  • 1个
  • 1
  • 普通
  • 含税费 | 含运费
  • 2016-07-13
查看价格

共发射极放大器组成原则

共发射极放大电路又称反相放大电路,其特点为电压增益大,输出电压与输入电压反相,低频性能差,适用于低频、和多级放大电路的中间级。

(1)直流电源要设置合适静态工作点,并作为输出的能源。对于晶体管放大电路,电源的极性和大小应使晶体管基极与发射极之间处于正向偏置;而集电极与基极之间处于反向偏置;即保证晶体管工作在放大区。

(2)电阻取值得当,与电源配合,使放大管有合适的静态工作电流。

(3)输入信号必须能够作用于放大管的输入回路。

(4)当负载接入时,必须保证放大管输出回路的动态电流能够作用于负载,从而使负载获得比输入信号大得多的信号电流或信号电压。

查看详情

共发射极放大器工作原理

1、放大倍数(增益)

①:Kp=Po/Pi=∣UoIo/UiIi∣=∣KuKi∣

2、阻抗

,为放大器对信号源所呈现的负载效应;或由放大器输入端向放大器看进去的等效电阻,Ri=Ui/Ii。

为将放大器的输出端等效为具有内阻的电压源,则电压源的内阻即为放大器的输出电阻;或由放大器输出端向放大器看进去的等效电阻,Ro=Uo/Io。

3、其它

通频带,非线性失真系数,最大不失真输出电压,最大输出功率与效率。

晶体管放大器是一种三端电路,其中必有一个端是输入和输出的共同"地"端,如果这个共"地"端接于发射极的,称为共射电路,接于集电极的,称为共集电路,接于基极的,称为共基电路,这三种有不同的性能,

查看详情

共发射极放大器元件作用常见问题

查看详情

共发射极放大器元件作用文献

电荷放大器-放大器 电荷放大器-放大器

电荷放大器-放大器

格式:pdf

大小:52KB

页数: 3页

五、电荷放大器 电荷放大器主要由一个高增益反向电压放大器和电容负反馈组成。输入端的 MOSFET 或 J-FET 提供高绝缘性能,确保极低的电流泄露。 电荷放大器将压电传感器产生的电荷转换为成比例的电压, 用来作为监测和控制过程的 输入量。电荷放大器主要由一个具有高开环增益和电容负反馈的 MOSFET( 半导体场效应晶 体管 )或 JFET(面结型场效应晶体管 )的反向电压放大器组成, 因此它的输入产生高绝缘阻抗, 会引起少量电流泄漏。忽略 Rt 和 Ri,输出端电压为: )( 1 1 1 crt r r o CCC AC C Q U 对于足够高的开环增益,系数 1/AC 接近于零。因此可以忽略电缆和传感器的电容,输 出电压仅由输入端电压和量程电容决定。 r o C QU 电荷放大器可看成是电荷积分器, 它总是在量程电容两端以大小相等, 极向相反的电荷 补偿传感器产生的电荷。 量程电容两端

六、电荷放大器与电压放大器 六、电荷放大器与电压放大器

六、电荷放大器与电压放大器

格式:pdf

大小:52KB

页数: 2页

实验六 电荷放大器与电压放大器 加速度一般通过压电加速度传感器进行测量。 电荷放大器能将传感器输出的 微弱电荷信号变换成放大了的电压信号, 同时又能将传感器的高阻抗输出变换成 低阻抗输出。压电加速度传感器的输出需经电荷放大器进行变换 (即电荷—电压 转换),方可用于后续的放大、处理,因此电荷放大器是加速度测量中必不可少 的。下图为电荷放大器的仿真原理图。 下图为电荷放大器仿真的波形图。 用运放构成同相放大器可以实现电压放大。下图为电压放大器仿真的原理 图。 下图为电压放大器的波形图。

共发射极放大电路应用

低频电压放大器

一个使用共发射极放大器的典型范例,如原理图2所示。

收音机

共发射极放大器也用于射频电路,例如放大一个接收自天线的微弱信号的。在这种情况下,它常用以取代调谐电路的负载电阻。这可能限制工作的带宽到预定的运作的频率范围。更重要的是,还可以使调谐电路工作在更高的频率,可以用来产生共鸣任何跨电极和杂散电容,通常限制了频率响应。共发射极放大器也常用于低噪音放大器(low-noise amplifiers)。

查看详情

共发射极放大电路基本介绍

在电子学里,共发射极放大器是三个基本单级BJT放大器结构的其中一种,通常被使用于电压放大器。在这个电路中,基极作为输入端,集电极作为输出端,发射极为共用端(它可能接地,或是接到电源)。类似在场效晶体管电路的共源极(common source)。

查看详情

音频功率放大器设计目录信息

第1章概述

11功率放大电路的预备知识

111理想化的"黑盒子"电路

112分立件功放的优点

113功放集成电路的热失真

12晶体管和FET的工作原理

121晶体管和FET是怎么进行放大的

122晶体管的工作原理

123晶体管各端子电流之间的关系

124用数字万用表判断晶体管的类型

125用数字万用表测量晶体管的直流放大倍数

126FET的工作原理

第2章共发射极放大器

21观察共发射极放大器的波形

2115倍的电压放大

212基极与发射极电位及波形

213集电极与发射极电位及波形

22直流参数与电压增益

221直流参数

222电压增益

23放大电路的设计

231确定电源电压

232晶体管的选择

233确定发射极的静态电流

234发射极电阻的确定

235集电极电阻的确定

236晶体管的静态损耗

237基极偏置电路的设计

238临界输入、输出电压

239确定耦合电容Cin与Cout

2310确定电源去耦电容C1与C2

24放大电路的交流性能

241输入阻抗Ri

242输出阻抗Ro

243幅频特性

244频率特性不扩展的原因

245提高电压放大倍数的方法

246噪声电压

247总谐波失真

第3章共集电极放大器

31观察射极跟随器的波形

311射极跟随器的工作波形

312较低的阻抗输出

32射极跟随器的设计

321确定电源电压

322晶体管的选择

323晶体管集电极损耗

324发射极电阻Re的确定

325基极偏置电路的确定

326输入、输出电容的确定

33射极跟随器的交流性能

331输入、输出阻抗

332加重负载或增大输入信号时的工作状况

333互补对称功率放大器

334改进后的互补对称功率放大器

335幅频与相频特性

336噪声及总谐波失真

第4章小功率音频放大器

41"发热"是功率放大器的重要问题

411功率放大器的基本架构

412功放管热击穿的机理

413UBE倍增管与功放管热耦合防止热击穿

42小功率放大器的设计

421设计规格

422电源电压的确定

423静态电流的确定

424集电极与发射极电阻的确定

425基极偏置电阻的确定

426UBE倍增电路

427功放管的损耗

428输出电路周边的组件

43小功率放大器的性能

431静态电流调整

432工作波形与电压增益

4332kΩ的输入阻抗

434负载8Ω时的最大输出电压

435用PNP晶体管作为放大级

44小功率音频放大器设计实例

441电路结构及工作原理

442功放管TIP41与TIP42

第5章单管输入级功率放大器

51单管输入级小功率放大器

511单管输入功放的电路结构

512直流参数

513提高输入阻抗

514电压放大倍数

515输入级偏置电阻的确定

516反馈电阻和采样电阻的确定

517输入级集电极电阻的确定

518单管输入功放的工作波形

519负反馈使放大倍数下降但稳定性提高

5110大电压输出的特殊情况

5111恒流源改善交流性能

5112用NPN晶体管做前置级的小功率放大器

5 2复合管输出级功率放大器

521复合管输出级的电路结构

522静态参数

523激励级电流的确定

524前置级静态电流及有关电阻的确定

525自举电容的作用

526激励级输入端虚地

527双电源供电的OCL电路

528交流耦合与直流耦合

529茹贝尔电路

第6章差动放大器

61差动放大器的工作原理

611温度漂移

612电路组成

613对共模信号的抑制作用

614对差模信号的放大作用

615差动放大器的电压传输特性

62差动放大器的其他三种接法

621双端输入-单端输出

622单端输入-双端输出

623单端输入-单端输出

624差动放大器的优点

625集成运放中的差动放大器

63观察差动放大器的波形

631实验用差动放大器的电路结构

632差模放大的工作波形

633共模放大的基极与集电极波形

634共模放大的基极与发射极波形

635共模电压放大倍数与共模抑制比

636发射极串接衰减电阻降低增益

637输入、输出阻抗

64差动放大器的设计

641恒流源参数的确定

642电源电压的确定

643恒流源电流的确定

644集电极电阻的确定

65差动放大器在集成运放中的应用

第7章差动输入级功率放大器

71功放的历史、电路结构与工作方式

711功放的历史

712功放的电路结构

713功放的工作方式

72差动功放的基本原理

721差动功放是如何工作的

722功放的增益带宽积

723传统功放线路的优点

724功放中的负反馈

73差动输入级功率放大器的设计

731差动功放的电路结构

732静态参数计算(电源电压±15V)

733动态参数估算

734工作波形

735用NPN管作为输入级的功放

74输出级的结构类型

741射极跟随器类型

742倒置达林顿类型

743准互补输出级

744三重结构输出级

745大信号失真的机理

746功率管并联输出能减小失真

747功率管并联输出的功放电路

第8章深入研究小信号放大级

81差动输入级

811输入级产生的失真

812单独测量输入级的失真

813直流平衡能减小总谐波失真

814镜像电流源负载能迫使差分对电流精确平衡

815输入级的恒定跨导变换

816直流失调电压

82电压放大级

821电压放大级的失真

822电压放大级的仿真

823改善电压放大级的线性:有源负载技术

824电压放大级的强化

825平衡式电压放大级

826"小钢炮"--平衡式电压放大级功放电路实例

82750W(B类)HiFi功放

83放大器的转换速率

831放大器速率限制的基础知识

832转换速率的提高

833晶体管极间电容穿透效应对转换速率的影响

834现实中的速率限制

835其他影响速率的因素

836具有电流补偿功能的UBE倍增电路

837改进转换速率的50W(AB类)HiFi功放设计实例

第9章功率放大器设计实例分析

91全互补对称功率放大器

911互补对称差分输入级

912电压放大级

913功率输出级

914输出电感的作用

915大功率2SC5200和2SA1943对管

92功率放大电路的安全运行

921功率管的二次击穿

922功率管的安全工作区

923功率管的散热问题

93用LM3886制作双声道功放

931LM3886简介

932电路结构及工作原理

第10章A类功率放大器设计

101准A类功率放大器

1011A类功放输出级工作分析

1012准A类功放的前置输入级工作状况

1013准A类功放的激励级的静态电流

1014功率输出级的电流分配

1015功率输出级的电流波形

1016电源电路及指示

1017场效应管2SK246、晶体管2SC2240和2SA970

102集成运放+分立元件甲类功放

1021电路结构与工作原理

1022关键元器件

结束语

参考文献

查看详情

相关推荐

立即注册
免费服务热线: 400-888-9639