选择特殊符号
选择搜索类型
请输入搜索
判断煤气分布最直接的方法是了解炉内各点的煤气流速。在掌握各处矿石厚度的情况下,就可以知道该处矿石量与煤气量的比值,从而了解煤气分布状况。但是,由于测量煤气流速在技术上有较多困难而不能经常进行,在生产中往往采用间接的方法,即用煤气中的CO2%、煤气温度和红外线热图像仪测定等方法判断煤气分布。
煤气流速分布与CO%量的分布相似,而煤气中CO% CO2%≈常数,所以CO2%量的径向分布间接反映了煤气流速的分布,即CO2%量低处,流速高;CO2%量高处,流速低。理论上的解释是,在矿石堆积、气流不畅的部位,正是CO利用得好而CO2含量高的部位;在矿石较少、透气性好的部位,也正是流速高、CO利用差而CO2含量低的部位。CO2曲线也称煤气曲线。取样位置在料面下约1~2m左右的平面上,一般是4个方向呈十字交叉式布置取样孔,在炉外设有取样平台和伸进与拉出取样管的电动绞车,也有的高炉采用人工手动,一般是在半径上取5点,故又称作5点取样。取出试样后分析其中CO2含量,并按直径画出曲线,用来判断煤气分布。如图1中的4种曲线就代表4种煤气分布:a为边缘气流型,即边缘CO2%很低,中心CO2%很高,是典型的“馒头状”曲线,表示中心焦炭负荷过重,边缘气流过分发展的情况。在此情况下,大量煤气未经充分利用而从边缘逸出,造成炉顶温度偏高,除尘器混合煤气中CO2低。这种曲线表示炉缸中心堆积,炉衬容易损坏,后果是焦比升高。b为中心气流型,即中心CO2%较低,温度较高,而边缘CO2较高,有人称“喇叭花型”,也有人称“展翅型”,这种煤气分布,煤气利用率高,炉顶温底低,混合煤气中CO2%高,焦比低,炉衬寿命长,是现代高炉生产的典型曲线。c为两道气流型,即中心和边缘气流都有适度的发展,又称作“双峰型”。这种类型的煤气分布对炉料加工处理稍差的高炉比较适用,易获高产,但指标不如中心气流型好。图1中d为管道气流,即CO2%最低点既不在中心,也不在边缘,而在发生管道行程的部位。此时,大量未经充分利用的煤气从“管道”流失,能量利用差,炉况不顺、属煤气分布严重失常情况。
a—边缘气流;b—中心气流;c—两道气流;d—管道行程
温度分布与煤气流速和CO2分布紧密相关。根据温度分布亦可判断煤气分布。过去中国多数高炉在炉喉和4个煤气导出管各安装4个热电偶,所以只能判断圆周上4个方向的温度变化。近年来,随着炉料分布控制技术的提高,相应的煤气流分布测试装置也得到很大改善。多数大高炉将炉喉圆周上的热电偶增加到8~16个,对径向上的温度分布的测定也由间歇式改为固定式,即在料面以下700~800mm的高度上,安装两个互相垂直,并向中心沿料面下倾的固定探测管,内装热电偶,或称十字形探测器。每个直径方向上可测9~13点。与CO2%分布相似,可以画出两个直径方向上的温度分布曲线和炉喉四周的温度分布曲线。径向上的温度分布曲线的形状与CO2曲线的形状正相反,即CO2含量高的点其温度是低的。它比CO2曲线更易连续测量,为高炉行程的自动控制提供更多信息。在实际生产中主要是用CO2曲线和温度分布曲线来判断煤气分布。
高炉煤气分布一般用红外线热图像仪测定。在20世纪70年代初,日本首先将红外线工业电视系统应用于高炉。该装置是将红外线摄像机光学扫描系统安装在炉头上,将收集的红外光反射到检测器中,经过信号转换和处理,输出到显示器上,给出料面等温线和分色的温度区带,以及某一直径上的温度分布曲线,给操作者很直观地提供了料面温度分布图像。利用热图像仪提供的信息可以判断炉料下降和煤气分布情况,探测操作中的失常情况和迅速反映出布料控制措施的效果。此外还可以为冶炼过程分析计算,诸如软熔带,热动态模型等提供必要的数据。该装置已成功地应用在日、美、德及中国宝山钢铁公司等的高炉上。
从传热传质角度看,最理想的煤气分布应该是,在高炉的横截面上单位矿石量所通过的煤气量相等,这时煤气的热能和化学能利用最充分,与此相应也要求炉料呈均匀分布。但事实上在块状带,矿石和焦炭均匀地、在径向上厚度相同地分布时,气流阻力最大,同时软熔带内由于有半熔融物和熔融物的生成,呈水平位置时的软熔层将最厚,它的气体阻力也最大,只有把它分散开,使之与水平面成一定角度,例如为65°~70°,才能使它对气流阻力的影响减到最小,气体通过软熔层的路程最短。因此高炉中软熔带只能呈“人”、“W”形,而不能呈“—”形,为此,在实际生产中,人们根据不同的冶炼条件寻求最佳的软熔带形状和最合理的煤气分布。
合理的煤气分布的特点是:炉料顺利下降,炉温充沛,炉况稳定;煤气能量利用充分,炉顶温度低,CO利用率高;最终表现为焦比和燃料比低,生铁成分稳定,炉衬寿命长。在原料准备较好,炉子较大,设备先进的大型高炉上,公认的比较合理的煤气分布,按CO2曲线或温度来判断,应是平坦中心气流型,即要求中心保持一个阻力较小的煤气发展道路,但范围不宜过宽,边缘亦应有适量的煤气流,在中间环区则尽量均匀平坦分布;四周CO2和温度的分布比较均匀。对高炉生产来说,合理的煤气分布曲线是相对的,它随着炉容的大小,原料准备处理的情况,设备条件,操作工艺水平等而变化的。不同的历史时期,不同高炉所追求的合理煤气分布也不同。例如,为了追求产量(多出铁)时,宁可维持较高的焦比,常采用两道气流型,甚至边缘发展高型。但就连续铸钢炼铁的发展方向来说,应该尽量改善原燃料条件,做到均衡生产,尽量使煤气热能和化学能得到充分利用,做到最佳最合理的煤气分布,达到高产、优质、低耗和长寿的目的。 2100433B
高炉和转炉煤气的理化性质和危险特性一、高炉煤气的理化性质和危险特性:1、高炉煤气的理化性能主要取决于煤气的成份,不同成份的煤气性质不同,易燃易爆、易中毒是煤气的三大特性。中毒、着火、爆炸通常称为煤气三...
高炉煤气:27~30;氢气1.5~1.8;氮气55~57;二氧化碳8~12;发热量(kcal/Nm3)850~950;燃点(℃)700;主要性质:无色无味有易燃易爆转炉煤气:60~70;发热量...
冶金企业煤气安全知识 一、高炉煤气 高压鼓风机鼓风,并且通过热风炉加热后进入了高炉,这种热风和焦炭助燃,产 生的是二氧化碳和,二氧化碳又和炙热的焦炭产生, 在上升的过程中,还原了铁矿石中的铁元素,使之...
高炉煤气、转炉煤气和焦炉煤气
高炉煤气、转炉煤气和焦炉煤气的区别? 冶金企业 一、高炉煤气 (高炉炼铁,转炉炼钢) 高压鼓风机鼓风, 并且通过热风炉加热后进入了高炉, 这种热风和焦炭助燃, 产 生的是 CO2和 CO,CO2又和炙热的焦炭产生 CO,CO在上升的过程中,还原了铁矿石中的铁 元素,使之成为生铁,这就是炼铁的化学过程。铁水在炉底暂时存留, 定时放出用于直接炼 钢或铸锭。 这时候在高炉的炉气中, 还有大量的过剩的 CO,这种混和气体,就是高炉煤气。 每炼 1 吨铁可产生 2100-2200 立方米的高炉煤气 。 这种含有可燃 CO的气体,是一种低热值的气体燃料,可以用于冶金企业的自用燃气, 如加热热轧的钢锭、预热钢水包等。也可以供给民用,如果能够加入焦炉煤气,就叫做“混 和煤气”,这样就提高了热值。 高炉煤气为炼铁过程中产生的副产品,主要成分为 :CO, C02, N2、H2、CH4等,其中 可燃成分 CO含
高炉煤气方案
大型高炉煤气取样分析远程监控系统 目前,大型炼铁高炉煤气取样分析控制系统大多是人工装置, 人工取样不仅劳动条件恶 劣,而且分析结果很难代表某一时间高炉煤气成分实际的径向分布。 为此笔者设计了大型炼 铁高炉远程煤气自动取样分析监控系统。 本系统采用安装组态软件 MCGS 的工控机为上位机 和 PLC 为下位机来对大型炼铁高炉 (2200 m3 ) 远程煤气取样现场进行过程监控,取代了目 前的人工取样分析装置。 1 系统组成 本系统由工控机、 煤气取样现场控制柜、 煤气取样机和红外在线分析装置组成。 工控机 安装在主控室, 用以收发取样分析系统的远程信号, 记录、储存、显示和处理各项分析结果。 煤气取样现场控制拒安装在取样装置平台上, 在控制柜上可以手动操作也可以自动操作, 煤 气取样机安装在取样平台上, 受现场控制柜控制, 是直接驱动采样杆从炉中取气的机械装置。 红外在线分析装置安装在取样平
BFG是高炉煤气(Blast Furnance Gas)的英文缩写,高炉炼铁过程副产,产率高达吨铁约2000m3;但热值低,CO含量高,毒性较大,以往使用价值较低。
BFG因热值低,常温下燃烧不稳定,理论燃烧温度只有300℃左右。一般工业炉都使用BFG与COG配置的混合煤气。高炉热风炉凭借炉内耐火砖砌体热容量大所形成的高温环境,使单一BFG能够稳定燃烧。如要求获得更高的热风温度,还需要将BFG和助燃空气预热后送热风炉燃烧。复热式炼焦炉使用单一BFG,是将BFG和助燃空气通过蓄热室的格子砖预热到1000℃左右,然后进入燃烧室立火道燃烧,可使炭化室炉墙加热到1100℃以上。
近年来钢厂为节能降耗,纷纷将原先因富余而放散的BFG和LDG送锅炉掺烧,LDG的回收率已有所提高。BFG燃烧降低炉膛辐射传热效果,而且废气量又大。掺烧多了影响锅炉的热效率。2100433B
高炉煤气中带有大量的灰分,灰分含量可达60~80g/Nm3,而水蒸气通常是饱和的,所以它是一种低级燃料。通常,高炉煤气在使用前应进行净化处理,有时与重油或煤粉掺和作为工业炉和锅炉的燃料 。
高炉煤气在钢铁厂的应用
烧纯高炉煤气锅炉发电技术、燃气-蒸汽联合循环发电机组和高温蓄热式燃烧技术的研制成功并在钢铁企业中的广泛应用,为高炉煤气的有效利用提供了很好的途径 。
高炉煤气除作为加热燃料供钢铁厂使用外,还能用于发电等其它用途,利用好这部分副产能源不仅能降低企业的能源消耗,还将改善钢铁企业对周边环境的污染。
提高高炉煤气利用的措施
低热值高炉煤气的特点是可燃成分低,燃烧不稳定,燃烧温度低,烟气量大。火焰稳定直接关系到燃烧的安全性,对低热值煤气一般都采用稳定强化燃烧的措施,如富化高炉煤气或采用换热器对高炉煤气和助燃空气双预热等 。
高炉煤气特性:
(1)高炉煤气中不燃成分多,可燃成分较少(约30%左右),发热值低,一般为3344-4180千焦/标米³;
(2)高炉煤气是无色无味、无臭的气体,因CO含量很高、所以毒性极大;
(3)燃烧速度慢、火焰较长、焦饼上下温差较小;
(4)用高炉煤气加热焦炉时,煤气中含尘量大,容易堵塞蓄垫室格子砖;
(5)安全规格规定在1米³空气CO含量不能超过30mg;
(6)着火温度大于700℃。
(7) 高炉煤气含有H2(1.5-3.0%),CH4(0.2-0.5%),CO(25-30%),CO2(9-12%),N2(55-60%),O2(0.2-0.4%);密度为1.29-1.30Kg/Nm3。
一、高炉煤气需要预热
同体积的高炉煤气的发热量较焦炉煤气低得多,一般为3300-4200KJ/m3。热值低的高炉煤气是不容易燃烧的,为了提高燃烧的热效应,除了空气需要预热外,高炉煤气也必须预热。因此使用高炉煤气加热时,燃烧系统上升气流的蓄热室中,有一半用来预热空气,另一半用来预热煤气。煤气与空气一样,经过斜道进入燃烧室立火道进行燃烧。
二、燃烧系统的阻力大
用高炉煤气加热时,耗热量高(一般比焦炉煤气高15%左右),产生的废气多,且密度大,因而阻力也较大。而上升气流虽然供入的空气量较少,但由于上升气流仅一半蓄热室通过空气,因此上升气流空气系统和阻力仍比焦炉煤气加热时要大。
三、高炉煤气燃烧火焰较长
高炉煤气中的惰性气体约占60%以上。因而火焰较长,焦饼上下加热的均匀性较好。
由于通过蓄热室预热的气体量多,因此蓄热室、小烟道和分烟道的废气温度都较低。小烟道废气出口温度一般比使用焦炉煤气加热时低40--60℃。
四、高炉煤气毒性大
高炉煤气中CO的含量一般为25%--30%,为了防止空气中CO含量超标,必须保持煤气设备严密。高炉煤气设备在安装时应严格按规定达到试压标准,如果闲置较长时间再重新使用前,必须再次进行打压试漏,确认管道、设备严密后才能改用高炉煤气加热。日常操作中,还应对交换旋塞定期清洗加油,对水封也应定期检查,保持满流状态,蓄热室封墙,小烟道与联接管处的检查和严密工作应经常进行。
高炉煤气进入交换开闭器后即处于负压状态。一旦发现该处出现正压,应立即查明原因组织人力及时处理,确保高炉煤气进入交换开闭器后处于负压状态。
五、高炉煤气含尘量大
焦炉所用的高炉煤气含尘量要求最大不超过15mg/m。2012年以来由于高压炉顶和洗涤工艺的改善,高炉煤气含尘量可降到5mg/m以下,但长期使用高炉煤气后,煤气中的灰尘也会在煤气通道中沉积下来,使阻力增加,影响加热的正常调节,因而需要采取清扫措施。
另外,高炉煤气是经过水洗涤的,它含有饱和水蒸汽。煤气温度越高,水分就越多,会使煤气的热值降低。从计算可知,煤气温度由20℃升高到40℃时,要保持所供热量不变,煤气的表流量约增加12%。因此要求高炉煤气的温度不应超过35℃。当煤气温度发生一定变化时,交换机工应立即调整加热煤气的表流量,以保证供给焦炉的总热量的稳定。