选择特殊符号
选择搜索类型
请输入搜索
1.可由镁还原四氯化铪或热分解四碘化铪制取。也可以HfCl4和K2HfF6为原料。在NaCl-KCl-HfCl4或K2HfF6熔体中电解制取,其工艺过程与锆的电解制取相近。
2.铪多与锆共存,没有单独存在的铪原料。铪的制造原料是在制造锆的工艺流程中分离出来的粗氧化铪。用离子交换树脂的方法提取氧化铪,随后利用与锆相同的方法从这种氧化铪中制取金属铪。
3.可由四氯化铪(HfCl4)与钠共热经还原而制得。
4.最早分离锆、铪的方法是含氟络盐的分级结晶和磷酸盐的分级沉淀。这些方法操作麻烦,仅限于实验室使用。陆续出现了分级蒸馏、溶剂萃取、离子交换和分级吸附等分离锆、铪的新技术,其中以溶剂萃取法较有实用价值。常用的两种分离体系是硫氰酸盐-异己酮体系和磷酸三丁酯-硝酸体系。以上方法所得产品都是氢氧化铪,通过煅烧可得纯的氧化铪。高纯度的铪可以用离子交换法取得。
工业上,金属铪的生产常常并用克罗尔法和德博尔-阿克尔法。克罗尔法是用金属镁还原四氯化铪:
2Mg HfCl4─→2MgCl2 Hf
德博尔-阿克尔法即碘化法,用此法提纯海绵状铪,得到可延展的金属铪。
5.铪的冶炼,与锆基本相同:
第一步为矿石的分解,有三种方法:锆石氯化得(Zr,Hf)Cl。锆石的碱熔。锆石与NaOH在600左右熔融,有90%以上的(Zr,Hf)O转变为Na(Zr,Hf)O,其中的SiO变成NaSiO,用水溶除去。Na(Zr,Hf)O用HNO溶解后可作锆铪分离的原液,但因含有SiO胶体,给溶剂萃取分离造成困难。用KSiF烧结,水浸后得K(Zr,Hf)F溶液。溶液可以通过分步结晶分离锆铪;
第二步为锆铪分离,可用盐酸-MIBK(甲基异丁基酮)系统和HNO-TBP(磷酸三丁酯)系统的溶剂萃取分离方法。利用高压下(高于20大气压)HfCl和ZrCl熔体蒸气压的差异而进行多级分馏的技术早有研究,可省去二次氯化过程,降低成本。但由于(Zr,Hf)Cl和HCl的腐蚀问题,既不易找到合适的分馏柱材质,又会使ZrCl和HfCl质量降低,增加提纯费用,70年代仍停留在中间厂试验阶段;
第三步为HfO的二次氯化以制得还原用粗HfCl;
第四步为HfCl的提纯和加镁还原。该过程与ZrCl的提纯和还原相同,所得半成品为粗海绵铪;
第五步为真空蒸馏粗海绵铪,以除去MgCl和回收多余的金属镁,所得成品为海绵金属铪。如还原剂不用镁而用钠,则第五步改为水浸
铪为银灰色的金属,有金属光泽;金属铪有两种变体:α铪为六方密堆积变体(1750℃),其转变温度比锆高。金属铪在高温下有同素异形变体存在。金属铪有较高的中子吸收截面,可用作反应堆的控制材料。
晶体结构有两种:在1300℃以下时,为六方密堆积(α-式);在1300℃以上时,为体心立方(β-式)。具有塑性的金属,当有杂质存在时质变硬而脆。空气中稳定,灼烧时仅在表面上发暗。细丝可用火柴的火焰点燃。性质似锆。不和水、稀酸或强碱作用,但易溶解在王水和氢氟酸中。在化合物中主要呈 4价。铪合金(Ta4HfC5)是已知熔点最高的物质(约4215℃)。
晶体结构:晶胞为六方晶胞
地壳中含量(ppm) |
5.3 |
元素在太阳中的含量:(ppm) |
0.001 |
元素在海水中的含量:(ppm) |
0.000007 |
莫氏硬度 |
5.5 |
声音在其中的传播速率(m/S) |
3010 |
质子质量 |
1.20456E-25 |
质子相对质量 |
72.504 |
铪的化学性质与锆十分相似,具有良好的抗腐蚀性能,不易受一般酸碱水溶液的侵蚀;易溶于氢氟酸而形成氟合配合物。高温下,铪也可以与氧、氮等气体直接化合,形成氧化物和氮化物。
铪在化合物中常呈 4价。主要的化合物是氧化铪HfO2。氧化铪有三种不同的变体:将铪的硫酸盐和氯氧化物持续煅烧所得的氧化铪是单斜变体;在400℃左右加热铪的氢氧化物所得的氧化铪是四方变体;若在1000℃以上煅烧,可得立方变体。另一个化合物是四氯化铪,它是制备金属铪的原料,可由氯气作用于氧化铪和碳的混合物制取。四氯化铪与水接触,立即水解成十分稳定的HfO(4H2O)2 离子。HfO2 离子存在于铪的许多化合物中,在盐酸酸化的四氯化铪溶液中可结晶出针状的水合氯氧化铪HfOCl2·8H2O晶体。
4价铪还容易与氟化物形成组成为 K2HfF6、K3HfF7、(NH4)2HfF6、(NH4)3HfF7的配合物。这些配合物曾用于锆、铪分离。
电子排布 |
72 |
外围原子序数 |
5d26s2 |
核内质子数 |
72 |
核外电子数 |
72 |
核电核数 |
72 |
所属周期 |
6 |
所属族数 |
IVB |
核外电子排布 |
2,8,18,32,10,2 |
核电荷数 |
72 |
电子层 |
K-L-M-N-O-P |
氧化态 |
Main Hf 4 Other Hf 1, Hf 2, Hf 3 |
晶胞参数:a =b= 319.64 pm,c = 505.11 pm,α =β= 90°,γ = 120°
电离能(kJ /mol)
M - M 642 |
M - M2 1440 |
M2 - M3 2250 |
M3 - M4 3216 |
原子半径:1.59 |
常见化合物
二氧化铪:名称 二氧化铪;hafnium dioxide;分子式:HfO2;性质:白色粉末,有单斜、四方和立方三种晶体结构。密度分别为10.3,10.1和10.43g/cm3。熔点2780~2920K。沸点5400K。热膨胀系数5.8×10-6/℃。不溶于水、盐酸和硝酸,可溶于浓硫酸和氟氢酸。由硫酸铪、氯氧化铪等化合物热分解或水解制取。为生产金属铪和铪合金的原料。用作耐火材料、抗放射性涂料和催化剂。 原子能级HfO是制造原子能级ZrO时同时得到的产品。从二次氯化起,提纯﹑还原﹑真空蒸馏等过程同锆的工艺流程几乎完全一样。
四氯化铪:四氯化铪(Hafnium(IV)chloride,Hafnium tetrachloride) 分子式 HfCl4 分子量 320.30 CAS编号:13499-05-3, 性状: 白色结晶块。对湿敏感。溶于丙酮和甲醇。遇水水解生成氯化氧铪(HfOCl2)。热至250℃挥发。对眼睛、呼吸系统、皮肤有刺激性。
氢氧化铪:氢氧化铪(Hafnium Hydroxide,H4HfO4),CAS号12027-05-3,氢氧化铪通常以水合氧化物HfO2·nH2O存在,难溶于水,易溶于无机酸,不溶于氨水,很少溶于氢氧化钠。加热至100℃,生成羟基氧化铪HfO(OH)2。可由铪(IV)盐与氨水反应得到白色氢氧化铪沉淀。可用于制取其他铪化合物。
1923年,瑞典化学家赫维西和荷兰物理学家D·科斯特在挪威和格陵兰所产的锆石中发现铪元素,并命名为hafnium,它来源于哥本哈根城的拉丁名称Hafnia。1925年,赫维西和科斯特用含氟络盐分级结晶的方法分离掉锆、钛,得到纯的铪盐;并用金属钠还原铪盐,得到纯的金属铪。 赫维西制得了几毫克纯铪的样品。
1998年德克萨斯州大学的Carl Collins教授做的一次实验中声称经伽玛射线照射的铪178m2(同质异能素铪-178m2 )可以释放巨大的能量,其能量比化学反应高5个数量级,但比核反应低3个数量级。 Hf178m2(铪178m2)在相似的长寿命同位素中有着最长的寿命:Hf178m2(铪178m2)的半衰期长达31年,因此其天然放射性活度约为1.6万亿贝克勒尔。Collins的报告指出:一克纯Hf178m2(铪178m2)包含约1330兆焦耳,这相当于300千克TNT炸药爆炸释放的能量。Collins的报告指出这一反应中所有的能量都以X射线或伽玛射线形式释放,这一能量释放速度极快,且Hf178m2(铪178m2)在极低浓度下仍可发生反应。 五角大楼为此拨款研究。 实验中信噪比很低(误差较大),且自此之后,尽管经过包括由美国国防部先进项目研究局(DARPA) 及 JASON Defense Advisory Group 等多国组织科学家多次试验,没有任何科学家能在Collins声称的条件下实现这一反应 ,而Collins也未能给出有力的证据证明这一反应的存在。 2006年,Collins提出利用诱发伽玛射线发射使Hf178m2(铪178m2)释放能量的方法 ,但另曾有科学家在理论上证明了这种反应不可能实现。 Hf178m2(铪178m2)在学术界被普遍认为不能作为能源来源。
世界上90%的咔唑是从煤焦油中得到的 ;也可由邻氨基联苯合成,然后用二重结晶精制。(1)合成法:以邻氨基二苯胺为原料,经亚硝酸处理,制得1-苯基-1,2,3-苯并,加热后,失去氮而生成咔唑。(2)法:...
①将定量的水加入四口烧瓶中,升温至60~0,开动搅拌器,然后一次性加入聚乙烯醇(1799)、聚丙烯酰胺、乳化剂、增稠剂和自来水。 2 ②继续升温至90~95℃,保持温度1h以上,.直至聚乙烯醇(179...
稀土发光材料主要有三种制备方法,它们是: 1.气相法:包括气体冷凝法、真空蒸发法、溅射法、化学气相沉积法(CVD)、等离子体法、化学气相输运法等。 2.固相法:包括高温固相合成法、自蔓延燃烧合成法(S...
铪的地壳丰度比常用金属铋﹑镉﹑汞多,与铍﹑锗﹑铀的含量相当。所有含锆的矿物中都含有铪。工业上用的锆石中含铪量为0.5 ~ 2%。次生锆矿中的铍锆石(alvite)含铪可以高达15%。还有一种变质锆石曲晶石(cyrtolite),含HfO达5%以上。后两种矿物的储量少,工业上尚未采用。铪主要由生产锆的过程中回收。
存在于大多数锆矿中。 因为地壳中含量很少。常与锆共存,无单独矿石。
由于铪容易发射电子而很有用处(如用作白炽灯的灯丝)。用作X射线管的阴极,铪和钨或钼的合金用作高压放电管的电极。常用作X射线的阴极和钨丝制造工业。纯铪具有可塑性、易加工、耐高温抗腐蚀,是原子能工业重要材料。铪的热中子捕获截面大,是较理想的中子吸收体,可作原子反应堆的控制棒和保护装置。铪粉可作火箭的推进器。在电器工业上可制造X射线管的阴极。铪的合金可作火箭喷嘴和滑翔式重返大气层的飞行器的前沿保护层,Hf-Ta合金可制造工具钢及电阻材料。在耐热合金中铪用作添加元素,例如钨、钼、钽的合金中有的添加铪。HfC由于硬度和熔点高,可作硬质合金添加剂。4TaCHfC的熔点约为4215℃,为已知的熔点最高的化合物。铪可作为很多充气系统的吸气剂。铪吸气剂可除去系统中存在的氧、氮等不需要气体。铪常作为液压油的一种添加剂,防止在高危作业时候液压油的挥发,具有很强的抗挥发性,这个特性的话,所以一般用于工业液压油。医学液压油。
铪元素也用于最新的intel45纳米处理器。由于二氧化硅(SiO2)具有易制性 (Manufacturability),且能减少厚度以持续改善晶体管效能,处理器厂商均采用二氧化硅做为制作栅极电介质的材料。当英特尔导入65纳米制造工艺时,虽已全力将二氧化硅栅极电介质厚度降低至1.2纳米,相当于5层原子,但由于晶体管缩至原子大小的尺寸时,耗电和散热难度亦会同时增加,产生电流浪费和不必要的热能,因此若继续采用时下材料,进一步减少厚度,栅极电介质的漏电情况势将会明显攀升,令缩小晶体管技术遭遇极限。为解决此关键问题,英特尔正规划改用较厚的高K材料(铪元素为基础的物质)作为栅极电介质,取代二氧化硅,此举也成功使漏电量降低10倍以上。另与上一代65纳米技术相较,英特尔的45纳米制程令晶体管密度提升近2倍,得以增加处理器的晶体管总数或缩小处理器体积,此外,晶体管开关动作所需电力更低,耗电量减少近30%,内部连接线 (interconnects) 采用铜线搭配低k电介质,顺利提升效能并降低耗电量,开关动作速度约加快 20%。
储存于阴凉、通风的库房。远离火种、热源。应与氧化剂、酸类、卤素等分开存放,切忌混储。采用防爆型照明、通风设施。禁止使用易产生火花的机械设备和工具。储区应备有合适的材料收容泄漏物。2100433B
金相试样制备方法
1 金相试样制备方法 时间 : 2010-01-08 22:05:48 来源 : 作者 : 点击 : 1 次 金相检验 是研究金属及合金内部组织的重要方法之一,为了在金相显微镜下正确有 效地观察到内部显微组织, 就需制备能用于微观检验的样品 ――金相试样 ,也可称之为磨片。 金相试样制备 的主要程序为:取样 —嵌样 (对于小样品 )—磨光—抛光一浸蚀等。 一、取样原则 用金相显微镜对金属的一小部分进行金相研究, 其成功与否, 可以说首先取决所取试样有无 代表性。在一般情况下, 研究金属及合金显微组织的金相试样应从材料或零件在使用中最重 要的部位截取; 或是偏析、夹杂等缺陷最严重的部位截取。在分析失效原因时,则应在失效 的地方与完整的部位分别截取试样, 以探究其失效的原因。 对于生长较长裂纹的部件, 则应 在裂纹发源处、 扩展处、 裂纹尾部分别取样, 以分析裂纹产生的原因。 研究热处理后的
Tego型杀菌剂的制备方法及应用研究
Tego型杀菌剂的制备方法及应用研究——Tego型杀菌剂是一类新型的杀菌灭藻剂,是两性表面活性剂的一种,具有广谱性的杀菌能力,低毒性和污泥剥离作用,符合现代药剂高效低毒要求。通过对它的制备方法和产品性能以及国内外研究成果和用途的介绍,发现它对革兰氏阴...
铪的主要用途是制作原子核反应堆的控制棒。纯铪具有可塑性、易加工、耐高温抗腐蚀,是原子能工业重要材料。铪的热中子捕获截面大,是较理想的中子吸收体,可作原子反应堆的控制棒和保护装置。铪粉可作火箭的推进器。在电器工业上可制造X射线管的阴极。铪的合金可作火箭喷嘴和滑翔式重返大气层的飞行器的前沿保护层,Hf-Ta合金可制造工具钢及电阻材料。在耐热合金中铪用作添加元素,例如钨、钼、钽的合金中有的添加铪。HfC由于硬度和熔点高,可作硬质合金添加剂。4TaC·HfC的熔点约为4215℃,为已知的熔点最高的化合物。
《有色金属系列丛书:中国锆、铪》概要介绍了锆、铪工业的发展简史,锆、铪金属及其主要化合物的性质和用途,锆、铪的矿物资源分布及应用,硅酸锆和锆英砂的生产技术,锆化学制品的生产技术,二氧化锆的制备技术,锆陶瓷的生产技术,电熔氧化锆的生产技术,金属锆的冶炼及加工技术,金属铪的冶炼及加工技术,锆质设备的制造及应用,含锆废料的综合回收利用技术等知识,还含有锆、铪行业的标准及资本运作,国内外的主要生产商等内容,是一部对中国及世界锆、铪工业进行全貌描述的工具书。
《有色金属系列丛书:中国锆、铪》适合锆、铪业工作者和关心锆、铪工业发展的人士阅读,也可作为高等及大专院校相关专业的教学参考书。
卤化铪.四氯化锆是制备金属锆的重要原料。四氯化锆为白色晶体粉末,在604K升华,密度2.8,在潮湿空气中产生盐酸烟雾,遇水剧烈水解