选择特殊符号
选择搜索类型
请输入搜索
1.焊接回路内的电感在0~0.2mH 变化时,对短路电流上升速度的影响特别显著。短路电流增长速度应与焊丝的最佳短路频率相适应。细焊丝熔化快,熔滴过渡的周期短,因此需要较大的di/dt; 粗焊丝熔化慢,熔滴过渡的周期长,则要求较小的di/dt。
2.焊接回路中加人电感后,电弧燃烧时间加长。在熔滴短路过渡的一个周期中,只有电弧燃烧期间,电弧的大部分热量才能直接输人工件,对熔深形成起主要作用。焊丝直径较细时,由于需要较大的di/dt,焊接回路中加人的电感很小。这种情况下,在一个周期中短路过程结束后的电弧燃烧时间较短,从而减少了输往工件的热量,这有利于焊接薄板,但是对于较厚的板,由于母材熔化不足,可能会造成未焊透现象。另外,在实际生产环境中,焊接电缆比较长,常将一部分电缆盘绕起来。必须注意,这相当于在焊接回路中审人了一个附加电感,由于回路电感值的改变,使飞溅情况、母材熔深都会发生变化。
焊接回路电感具有一定的感抗,起阻止电流变化的作用——阻交流通直流,阻高频通低频(滤波)。通过调节电感器可调节焊接电源的动特性、起弧电流波形以及电流达到稳态值所需的时间,使焊接过程更加稳定。例如,增大手工电弧焊电源的电感将增加电弧的稳定性,并减少飞溅。
在用CO2气体保护焊焊接薄板时,焊接规范一般采用比较小的,即较低的电弧电压和较小的焊接电流,因此,熔滴呈短路过渡。主要的规范参数有:电弧电压,焊接电流,焊接回路电感,焊接速度,气体流量以及焊丝干伸长等。
1、电弧电压及焊接电流。
电弧电压是焊接规范中关键的一个参数。它的大小决定了电弧的长短,决定了熔滴的过渡形式。实现短路过渡的条件之一是保持较短的电弧长度。所以就焊接规范而言,短路过渡的一个重要特征是低电压。
确定电弧电压数值时,要考虑和焊接电流之间的匹配关系。在一定的焊丝直径及焊接电流下,电弧电压若过低,电弧引燃困难,焊接过程不稳定。电弧电压过高,则由短路过渡转变成大颗粒的长弧过渡,焊接过程也不稳定。
2、焊接回路电感。
焊接回路电感直接影响着短路电流的增长速度。因此,调节焊接回路电感,就可以调节短路电流的增长速度,从而控制电弧的燃烧时间,控制母材的熔深。
3、焊接速度。
焊接速度过快会引起焊缝两侧咬肉,焊接速度过慢则容易产生烧穿和焊缝组织粗大等缺陷,因此为了保证焊缝的质量,需要选择合适的焊接速度。
4、气体流量。
在焊接电流较大,焊接速度较快,焊丝干伸长度较长以及在室外作业等情况下,气体流量要适当加大,以使保护气体有足够的挺度,提高其抗干扰的能力。
冬季施工最大的特点我想就是温度比较低,在焊接作业时就一定必须重视温度,在焊接前需要测定焊接位置母才的温度,在低于工艺要求的温度的情况下,焊接前必须进行母材的预热。冬季焊接时应注意焊接后的保温问题 雨雪...
1、焊接变形对施工质量影响非常大,所以,焊接时应采取措施严格控制焊接变形。 2、根据板的不同厚度采取相应的预热措施及层间温度控制措施。 3、实施分段的多层多道焊,每焊完一道后应及时清理焊渣及表面飞溅,...
焊接阀门的使用注意事项
FITOK 焊接针型阀门(对焊型、插焊型、活接对焊型)的焊接注意事项: 一.基本结构(如图示) : 阀门的阀杆、填料压盖、锁紧螺母和阀帽采用 316 耐热不锈钢;填料采用 A-B-A 组合, A 为 碳纤维填料盘根, B 为石墨填料环。 二.推荐焊接参数: 钨极氩弧焊 (TIG 焊 ) ,直流正接 1. 焊接速度:圆周焊接,沿圆周方向为 40~60 毫 米 /分钟 2. 焊丝直径: Φ2 .4毫米 3. 焊接电流: 90~100 安培 4. 焊缝高度: 2.4~2.8 毫米,见左图。只焊接一层。 密封焊接,平滑均匀。 例如:Φ14毫米外径不锈钢管, 焊接于 FITOK针阀, 每一端大致需要 60 秒, 一次焊完一端。然后放一边 冷却后,再焊接另一端。 三.焊接阀门的泄漏原因分析: 1. 阀杆、填料压盖和阀帽的材料为 316 耐热不锈钢, 其线性热膨胀系数为 16.7x10 -6/K;石墨和
电感是闭合回路的一种属性,即当通过闭合回路的电流改变时, 会出现电动势来抵抗电流的改变。这种电感称为自感(self-inductance),是闭合回路自己本身的属性。假设一个闭合回路的电流改变,由于感应作用而产生电动势于另外一个闭合回路,这种电感称为互感(mutual inductance)。
当线圈中有电流通过时,线圈的周围就会产生磁场。当线圈中电流发生变化时,其周围的磁场也产生相应的变化,此变化的磁场可使线圈自身产生感应电动势(感生电动势)(电动势用以表示有源元件理想电源的端电压),这就是自感。
两个电感线圈相互靠近时,一个电感线圈的磁场变化将影响另一个电感线圈,这种影响就是互感。互感的大小取决于电感线圈的自感与两个电感线圈耦合的程度,利用此原理制成的元件叫做互感器。
铁心电感器线圈中通以交流电流后,所产生的磁通分为两部分: 一部分是通过铁心磁 路(包括在铁心磁路中插入非磁性气隙) 的主磁通,另一部分是通过线圈与铁心柱间空隙 的漏磁通。根据电感的基本定义,我们将主磁通产生的电感称为主电感
铁心电感器铁心中无气隙时,其漏电感可忽略不计,电感量按下式计算
N——线圈匝数;
铁心交流磁导率
由此可见,正确地确定铁心的磁导率是电感计算的基础。
交流磁导率
铁心电感器中有气隙时,当忽略其漏电感,其电感量按下式计算
当
当
考虑气隙磁通扩散后,气隙导磁面积
此时,在按式(3)计算电感或按式(5)计算有效磁导率时,将
当
1. 当忽略漏电感时的电感计算
2. 考虑漏电感影响时的电感计算
当漏电感不能忽略时,必须按以下公式计算漏电感
(1) 壳式或单线圈心式铁心电感器(图4) 漏电感按下式计算
N——电感器线圈匝数;
洛氏系数
线圈漏磁等效面积
(2) 双线圈式铁心电感器(图5) 漏电感按下式计算
式中,
铁心电感器的主电感
铁心电感器的电感L为
1、电感是储能元件,而磁珠是能量转换(消耗)器件;
2、电感多用于电源滤波回路,磁珠多用于信号回路,用于EMC对策;
3、磁珠主要用于抑制电磁辐射干扰,而电感用于这方面则侧重于抑制传导性干扰,两者都可用于处理EMC、EMI问题;EMI的两个途径,即:辐射和传导,不同的途径采用不同的抑制方法,前者用磁珠,后者用电感;
4、磁珠是用来吸收超高频信号,象一些RF电路,PLL,振荡电路,含超高频存储器电路(DDRSDRAM,RAMBUS等)都需要在电源输入部分加磁珠,而电感是一种蓄能元件,用在LC振荡电路,中低频的滤波电路等,其应用频率范围很少超过50MHZ;
5、电感一般用于电路的匹配和信号质量的控制上,一般地的连接和电源的连接。在模拟地和数字地结合的地方用磁珠。对信号线也采用磁珠。
磁珠的大小(确切的说应该是磁珠的特性曲线)取决于需要磁珠吸收的干扰波的频率。磁珠就是阻高频,对直流电阻低,对高频电阻高。因为磁珠的单位是按照它在某一频率产生的阻抗来标称的,阻抗的单位也是欧姆。磁珠的datasheet上一般会附有频率和阻抗的特性曲线图。一般以100MHz为标准,比如2012B601,就是指在100MHz的时候磁珠的Impedance为600欧姆。