选择特殊符号
选择搜索类型
请输入搜索
Foreword by V. Mohan Malhotra
Foreword by Wei Sun
Preface
Acknowledgements
The authors
1Introduction
1.1 The economical impact of concrete
1.2 Concrete and social progress
2 Environmental issues
2.1 Global/regional/local aspects
2.2 Rating systems
2.3 Evaluation systems/tools
2.4 ISO methodology/standards
2.5 Variation in focus
2.5.1 Different sectors of the concrete industry tend to focus on different aspects
2.5.2 Focus: Lifetime expectancy perspectives
2.5.3 Focus: 2020
2.5.4 Focus: 2050
2.6 Traditions/testing 76
2.6.1 Example 1
2.6.2 Example 2
2.6.3 Example 3
3 Emissions and absorptions
3.1 General
3.2 CO2 emission from cement and concrete production
3.3 Emission of other greenhouse gases
3.4 Absorption/carbonation
3.5 The tools and possible actions
3.5.1 Increased utilisation of supplementary cementing materials
3.5.2 Fly ash
3.5.3 Blast furnace slag
3.5.4 Silica fume
3.5.5 Metakaolin
3.5.6 Rice husk ash (RHA)
3.5.7 Natural pozzolans
3.5.8 Other ashes and slags
3.5.8.1 Sewage sludge incineration ash SSIA)
3.5.8.2 Ferroalloy slag
3.5.8.3 Barium and strontium slag
3.5.8.4 Other types of slag
3.5.8.5 Ashes from co-combustion
3.5.8.6 Wood ash
3.5.8.7 Fluidised bed ash
3.5.9 Limestone powder
3.5.10 Other supplementary cementitious materials
3.5.11 Improvements and more efficient cement
production
3.5.12 New/other types of cement/binders
3.5.12.1 High-belite cement(HBC)
3.5.12.2 Sulphur concrete
3.5.13 Increased carbonation
3.5.14 Better energy efficiency in buildings
3.5.15 Improved mixture design/packing technology/water reduction
3.5.16 Increased building flexibility, and more sustainable design and recycling practice
3.5.17 Miscellaneous
3.5.17.1 Production restrictions
3.5.17.2 The testing regime
3.5.18 Carbon capture and storage (CCS)
3.5.18.1 Capture
3.5.18.2 Storage
3.6 Variation in focus
3.6.1 Focus 1: Lifetime expectancy perspective
3.6.2 Focus 2:2020
3.6.3 Focus 3:2050
3.7 Some conclusions
4 Recycling
4.1 Recycling of concrete
4.1.1 Norway
4.1.2 Japan
4.1.3 The Netherlands
4.1.4 Hong Kong, China
4.1.5 General
4.1.5.1 Processing technology
4.1.5.2 Fines
4.2 Recycling of other materials as aggregate in concrete
4.2.1 Used rubber tires in concrete
4.2.2 Aggregate manufactured from fines
4.2.3 Processed sugar cane ash
4.2.4 Recycled plastic, e.g., bottles
4.2.5 Hempcrete and other "straw concretes"
4.2.6 Papercrete
4.2.7 Oil palm shell lightweight concrete
4.2.8 Glass concrete
4.2.9 Paper mill ash for self-compacting concrete (SCC)
4.2.10 Slag
4.2.11 Recycling of "doubtful" waste as aggregate
4.2.12 Iron mine mill waste (mill tailings)
4.2.13 Bauxite residue/red sand
4.2.14 Copper slag
4.2.15 Other materials
4.2.16 Waste latex paint
4.2.17 Fillers for self-compacting concrete
4.3 Recycling of other materials as reinforcement in concrete
4.4 Recycling of other materials as binders in concrete
4.4.1 Waste glass
4.4.2 Recycling of fluid catalytic cracking catalysts
4.5 Recycling of cement kiln dust (CKD)
5 The environmental challenges——other items
5.1 Aggregate shortage
5.2 Durability/longevity
5.3 Energy savings
5.4 Health
5.4.1 Skin burn
5.4.2 The chromium challenge
5.4.3 Compaction by vibration
5.4.4 Dust
5.4.5 Emission and moisture in concrete
5.4.6 Form oil
5.4.7 NOx-absorbing concrete
5.4.7.1 General
5.4.7.2 Principle of reaction
5.4.7.3 The catalyst
5.4.7.4 The effects
5.4.7.5 Concrete--product areas
5.4.7.6 Other experiences
5.4.7.7 Climate change and health
5.5 Leakage
5.5.l General
5.5.2 Leakage of pollutants from cement and concrete
5.5.2.1 Leakage from the cement manufacture process
5.5.2.2 Leakage from concrete
5.5.3 Concrete to prevent leakage
5.6 Noise pollution
5.6.1 Noise reduction in concrete production
5.6.2 Noise reduction from traffic
5.6.3 Reduction of noise pollution in buildings
5.6.4 Step sound reduction in stairways
5.7 Radiation
5.7.1 Effects of radioactive radiation on the human body
5.7.1.1 Alpha particles (or alpha radiation)
5.7.1.2 Beta particles
5.7.1.3 X-rays and gamma rays
5.7.2 Natural radioactivity in building materials
5.7.3 Radiation from cement and concrete
5.7.4 Radioactivity risk reduction with cement and concrete
5.7.4.1 Concrete as a shield of radiation
5.7.4.2 Encapsulation of radioactive materials with cement and concrete
5.7.5 Clearance of radioactive concrete
5.8 Safety
5.8.1 Concrete as a safety tool
5.8.2 Concrete safety levels in a climate change perspective
5.9 Water
5.9.1 Water shortage
5.9.2 Managing the increased precipitation
5.9.2.1 Pervious concrete
5.9.2.2 Pervious ground with concrete paver systems
5.9.2.3 Delaying systems
5.9.3 Reuse of wash water from concrete production
5.9.4 Escape of wash water from concrete production to freshwater and the sea
5.9.5 Food supply--artificial fish reefs (AFRs)
5.9.5.1 History
5.9.5.2 Where have AFRs been used"para" label-module="para">
5.9.5.3 Motivations for establishing AFRs
5.9.5.4 Design factors
5.9.5.5 Some examples
5.9.5.6 Restoration of coral reefs
5.9.5.7 The Tjuvholmen project
5.9.6 Erosion protection
5.10 Wastes
6 New possibilities and challenges
6.1 Small hydroelectric power stations
6.2 Windmills
6.3 New raw materials/low energy and low CO2 cements
6.3.1 Principle for clinker composition design
6.3.2 Lower energy and low-emission clinker preparation
6.3.3 Performance evaluation of HBC
6.3.3.1 Strength
6.3.3.2 Heat evolution characteristics
6.3.3.3 Chemical corrosion resistance
6.3.3.4 Drying shrinkage
6.3.3.5 Existing standards for HBC
6.3.3.6 Simplified explanation for the excellent performance of HBC
6.3.4 Latest results on belite-calcium Sulfoaluminate (BCSA) cement
6.4 New concrete products and components
7 The future
References
Index2100433B
《混凝土与可持续发展(英文)》主要探讨在全球范围内提升混凝土可持续性的系统思考方法和技术途径,以此鼓励和帮助有兴趣的读者(包括政策制定者,建筑与材料领域的专家、工程师,高等学校的教授、学生,以及致力于环境与可持续发展领域的人员等)针对混凝土可持续发展所面临的问题,用系统方法论对其资源可获取性、技术与经济可行性、环境相容性以及社会责任等要素进行全方位的思考和行动。回顾混凝土与建筑发展的历程,作者关注并提出了如下的焦点问题及其演变方向: 安全性→耐久性→服役性/功能性→可持续性 本书全面分析了世界混凝土可持续发展所面临挑战的复杂性和应对方案的多样性。第一章主要从混凝土对社会与经济发展的作用和影响的角度对混凝土可持续性问题进行了探讨;第二章重点介绍国际范围内混凝土可持续发展所涉及的环境评价工具和方法论,并分析了不同的关注焦点、评价方法和时限对混凝土可持续性的影响;第三、四章着重分析了水泥混凝土领域所面临的排放、捕集与吸收和循环的挑战;第五章分析了其他方面的环境挑战;第六、七章给出了综合评述及未来发展趋势的分析;最后列出了500多条参考文献,以供有兴趣的读者深度查阅。
城市可持续发展是指在一定的时空尺度上,以长期持续的城市增长及其结构进化,实现高度发展的城市化和现代化,从而既满足当代城市发展的现实需要,又满足未来城市的发展需求,实现城市由不协调剑协调、由非可持续剑可...
随着我国改革开放的不断深入和经济的迅速发展,中国将面临一个更大规模的建设高潮。可以说,我们正面临着一个伴随着国民经济飞跃的土木工程大发展的大好时期。而且这样一个优良的发展环境已经受到并将继续受到西方国...
第2版前言第1版前言第1章 土方工程1.1 土的分类与工程性质1.2 场地平整、土方量计算与土方调配1.3 基坑土方开挖准备与降排水1.4 基坑边坡与坑壁支护1.5 土方工程的机械化施工复习思考题第2...
绿色混凝土与可持续发展
绿色混凝土强调的是混凝土的绿色含量,着眼于混凝土的可持续发展。本文首先指出普通混凝土存在的问题从而引出绿色混凝土,介绍了绿色混凝土的定义、特征和基本分类,然后通过生产的绿色化途径指出了绿色混凝土与可持续发展之间存在的联系。
可持续发展的混凝土
可持续发展的混凝土 罗佩云 1 ,让艳艳 2 (1.烟台职业学院,山东烟台 264003;2.西安科技大学,陕西西安 710054 ) 摘要: 阐述了混凝上与环境之间的关系,说明了混凝土可持续发展的必要性,总结了可持 续发展混凝土——绿色混凝土的现状。 关键词 :混凝土,可持续发展,绿色混凝土, Continuable development of Concrete structure LUO Pei yun 1 ;Rang Yan yan 2 (1.Yantai Vocational College, Shandong 264003, China; 2 . xi ′an university science and technology) Abstract : In this paper the relationship between the concrete and enviro
混凝土与可持续发展:2013年化学工业出版社出版书籍
混凝土与可持续发展:2016年化学工业出版社出版书籍
本书全面分析了世界混凝土可持续发展所面临挑战的复杂性和应对方案的多样性。第1章主要从混凝土对社会与经济发展的作用和影响的角度对混凝土可持续性问题进行了探讨; 第2章重点介绍国际范围内混凝土可持续发展所涉及的环境评价工具和方法论,并分析了不同的关注焦点、评价方法和时限对混凝土可持续性的影响;第3、4章着重分析了水泥混凝土领域所面临的排放、捕集与吸收和循环的挑战;第5章分析了其他方面的环境挑战;第6、7章给出了综合评述及未来发展趋势的分析;最后列出了500多条参考文献,以供有兴趣的读者深度查阅。本书主要探讨在全球范围内提升混凝土可持续性的系统思考方法和技术途径,以此鼓励和帮助有兴趣的读者(包括政策制定者,建筑与材料领域的专家、工程师,高等学校的教授、学生,以及致力于环境与可持续发展领域的人员等)针对混凝土可持续发展所面临的问题,用系统方法论对其资源可获取性、技术与经济可行性、环境相容性以及社会责任等要素进行全方位的思考和行动。
《水与区域可持续发展》,本书为第九届中国水论坛论文集, 全书共分10个部分, 即冰冻圈对水、生态及可持续发展影响、城市化过程中的水问题、干旱区内陆河流域水与生态、气候变化与区域水循环、区域生态水文过程的人文因素、水文信息学、水与农业、水与灾害、水资源转换与地下水资源可持续利用、同位素水文学。 2100433B