选择特殊符号
选择搜索类型
请输入搜索
l LED照明用基板、高功率LED基板
l PC散热、IC散热基板、LED电视散热基板
l 半导体及体集成电路的散热基板
l 可替代PCB及铝基板
l 不需要变更原加工程序
l 优秀机械强度
l 具良好的导热性
l 具耐抗侵蚀
l 具耐抗侵蚀
l 良好表面特性,优异的平面度与平坦度
l 抗热震效果佳
l 低曲翘度
l 高温环境下稳定性佳
l 可加工成各种复杂形状
陶瓷基板种类主要有:
1.高温熔合陶瓷基板(HTFC)
2.低温共烧多层陶瓷(LTCC)
3.高温共烧多层陶瓷(HTCC)
4.直接接合铜基板(DBC)
5.直接镀铜基板(DPC)
1-1 HTFC(Hight-Temperature Fusion Ceramic)
HTFC 称为高温熔合陶瓷基板,将高温绝缘性及高热传导的AL2O3或AIN陶瓷基板的单面或双面,运用钢板移印技术,将高传导介质材料印制成线路,放置于850~950°C的烧结炉中烧结成型,即可完成。有嘉宝瑞实业研发,是目前LED基板散热最前沿。
2-1 LTCC(Low-Temperature Co-fired Ceramic)
LTCC 又称为低温共烧多层陶瓷基板,此技术须先将无机的氧化铝粉与越30%~50%的玻璃材料加上有机粘结剂,使其混合均匀称为为泥装的浆料,接着利用刮刀把浆料刮成片状,再经由一道干燥过程将片状浆料形成一片片薄薄的生胚,然后依各层的设计钻导通孔,作为各层讯号的传递,LTCC内部线路则运用网版印刷技术,分别于生胚上做填孔及印制线路,内外电极则可分别使用银、铜、金等金属,最后将各层做叠层动作,放置于850~900°C的烧结炉中烧结成型,即可完成。
3-1 HTCC(Hight-Temperature Co-fired Ceramic)
HTCC 又称为高温共烧多层陶瓷,生产制造过程与LTCC极为相似,主要的差异点在于HTCC的陶瓷粉末并无玻璃材质,因此,HTCC必须在高温1200~1600°C环境下干燥硬化成生胚,接着同样钻上导通孔,以网版印刷技术填孔于印制线路,因其共烧温度较高,使得金属导体材料的选择受限,其主要的材料为熔点较高但导电性却较差的钨、钼、锰…等金属,最后再叠层烧结成型。
4-1 DBC(Direct Bonded Copper)
DBC 直接接合铜基板,将高绝缘性的AL2O3或AIN陶瓷基板的单面或双面覆上铜金属后,经由高温1065~1085°C的环境加热,使铜金属因高温氧化,扩撒与AL2O3材质产生(Eutectic)共晶熔体,是铜金属陶瓷基板粘合,形陶瓷复合金属基板,最后依据线路设计,以蚀刻方式备至线路。
5-1 DPC(Direct Plate Copper)
DPC 也称为直接镀铜基板,先将陶瓷基板做前处理清洁,利用薄膜专业制造技术—真空镀膜方式于陶瓷基板上溅镀于铜金属复合层,接着以黄光微影的光阻被覆曝光,显影,蚀刻,去膜制程完成线路制作,最后再以电镀/化学镀沉积方式增加线路的厚度,待光阻移除后即完成金属化线路制作。
一、坯料制备 德化的陶瓷坯料主要成分是石英、长石、高岭土。按其制品的成型方法可分为可塑法坯料和浆法坯料。二、制模三、成型成型就是用干燥的石膏模,将制备好的坯料用各种不同的方法制成所需要的坯件,目前德化...
1.大功率电力半导体模块;半导体致冷器、电子加热器;功率控制电路,功率混合电路。 2.智能功率组件;高频开关电源,固态继电器。 3.汽车电子,航天航空及电子组件。 4.太阳能电池...
陶瓷基板的热膨胀系数接近硅芯片,可节省过渡层Mo片,省工、节材、降低成本; 减少焊层,降低热阻,减少空洞,提高成品率; 在相同载流量下 0.3mm厚的铜箔线宽仅为普通印刷电路板...
热传导率又称为热导率,它代表了基板材料本身直接传导热能的一种能力,数值越高代表其导热能力越好。LED导热基板最主要的作用就是在于,如何有效的将热能从LED晶粒传导到散热系统,以降低LED晶粒的温度,增加发光效率与延长LED寿命,因此,导热基板热传导效果的优劣就将成为业界在选用导热基板时重要的评估项目之一。检视表一,由把重陶瓷散热基板的比较可明显看出,虽然AL2O3材料的热传导率约在20~51(W/mK)之间,LTCC为降低其烧结温度而添加了30%~50%的玻璃材料,使其热传导率降至20~51(W/mK)左右;而HTCC因其普通共烧温度略低于纯AL2O3基板的烧结温度,而使其因材料密度较低使得热传导系数低于AL2O3基板约在16~17(W/mK)之间。一般来说,LTCC与HTCC导热效果并不如HTFC、DBC、DPC导热基板理想
氮化铝陶瓷基板在高功率LED中应用研究
随着LED光源向高功率、集成化方向发展,散热基板对于提高器件的发光效率、降低结温、提高器件的可靠度和寿命起着十分重要的作用。本文选择厚度为0.4 mm的氮化铝(AlN)作为封装基板材料,结合磁控溅射镀膜、平面丝网印刷和光刻等半导体工艺技术,在AlN基板表面完成线路设计并增加反光层。通过力学性能测试、表面反光层的反射率表征和光源老化测试,结果显示在1000小时老化后,AlN陶瓷基板上封装的光源在色温漂移、发光效率衰减和可靠性等方面都明显要好于直接将芯片绑定金属基板上的光源。同时,从晶格失配与热失配的角度分析了AlN陶瓷基板在高功率LED光源封装中的优势。
多层印制电路板陶瓷基板
多层印制电路板陶瓷基板
以难熔金属钨、钼、钽、铌为基体,添加固溶强化元素形成以碳化物沉淀相和热加工方式强化的高温材料。它的熔点和高温强度大大超过高温合金和弥散强化合金,钨-钼和铌-钨-钽合金在1316°C时的拉伸强度分别达到 510和 210兆帕(约51和21公斤/毫米2)。钼合金在1093°C时的拉伸强度也能达到 490兆帕(约49公斤/毫米2),都是制造航空燃气涡轮发动机涡轮叶片、导向叶片和燃烧室的优良材料。缺点是受高温空气侵蚀时极易脆化,须在涂层的保护下使用。铌合金已被用于制造短时间工作的火箭发动机燃烧室和喷管,也有用钽制造这类高温部件的。用钨合金丝或钨纤维增强高温合金制成高温复合材料,可以弥补难熔合金的缺点,用作先进燃气涡轮发动机的涡轮叶片。
对HFW焊管焊缝熔合线尺寸的测量与控制,不仅可以为焊接过程的工艺参数设定提供参考,也有利于提升焊管产品的焊接质量。
熔合线是HFW 焊接过程中各工艺参数的综合结果。熔合线尺寸过小是由于焊接接触面熔化不充分或熔融金属被挤出过多的结果,这容易导致脆性焊接;熔合线尺寸过大会使得大量氧化夹杂物排除不充分而残留在焊缝中,致使焊缝强度和韧性降低。
熔合线控制技术的改善,一方面依赖于成型技术的改进,另一方面也依赖于高频加热效应的优化和氧化物能否充分排出 。
为了便于对熔合线进行识别和控制,较为快捷直观的方法是对焊缝区形貌进行观察与测量,即分别测量焊管壁厚内侧、外侧及中心部位亮线的宽度。也就是直接测量焊管壁厚t内、外表面1.0 mm 位置及壁厚1/2位置亮线的宽度值,测量过程如图1所示。