选择特殊符号
选择搜索类型
请输入搜索
最主要的是定义。 定滑轮是固定的也就是它的位置不会改变 动滑轮跟被拉起的物品一块运动。 用法上的区别; 定滑轮不省力 但可以改变拉力方向 动滑轮省力 但不能改变力的方向
简单的说,就是当滑轮组工作时,随绳子一起上升或下降的就是动滑轮,绳子动但滑轮不上升或下降的就是定滑轮(定滑轮会做圆周转动,但位置是不动的)
定滑轮:改变物体的运动方向,但不改变力的大小动滑轮:不改变物体的运动方向,但是将力F转化为F/2“省力”,原物体运动的距离X变为2X费距离。
滑轮是一个周边有槽,能够绕轴转动的小轮。由可绕中心轴转动有沟槽的圆盘和跨过圆盘的柔索(绳、胶带、钢索、链条等)所组成的可以绕着中心轴旋转的简单机械 叫做滑轮。
滑轮是杠杆的变形,属于杠杆类简单机械。
关于滑轮的绘品最早出现于一幅西元前八世纪的亚述浮雕。这浮雕展示的是一种非常简单的滑轮,只能改变施力方向,主要目的是为了方便施力,并不会给出任何机械利益。在中国,滑轮装置的绘制最早出现于汉代的画像砖、陶井模。
古希腊人将滑轮归类为简单机械。早在西元前400年,古希腊人就已经知道如何使用复式滑轮了。大约在西元前330年,亚里斯多德在著作《机械问题》(《Mechanical Problems》)里的第十八个问题,专门研讨"复式滑轮"系统阿基米德贡献出很多关于简单机械的知识,详细地解释滑轮的运动学理论。据说阿基米德曾经独自使用复式滑轮拉动一艘装满了货物与乘客的大海船,西元一世纪,亚历山卓的希罗分析并且写出关于复式滑轮的理论,证明了负载与施力的比例等于承担负载的绳索段的数目,即"滑轮原理"。
1608年,在著作《数学纪要》(《Mathematical Collection》)里,荷兰物理学者西蒙·斯特芬表明,滑轮系统的施力与负载之间移动路径的长度比率,等于施力与负载之间的反比率。这是雏型的虚功原理。
1788年,法国物理学者约瑟夫·拉格朗日在巨著《分析力学》(《Mécanique analytique》)里,使用滑轮原理推导出虚功原理,从而揭起了拉格朗日力学的序幕。
在我国,约完成于周安王14年癸巳(公元前388年)墨翟(人称墨子)和他的弟子们写的著作《墨经》中就有关于滑轮的记载。中心轴固定不动的滑轮叫定滑轮,是变形的等臂杠杆,不省力但可以改变力的方向。中心轴跟重物一起移动的滑轮叫动滑轮,是变形的不等臂杠杆,能省一半力,但不改变力的方向。实际中常把一定数量的动滑轮和定滑轮组合成各种形式的滑轮组。滑轮组既省力又能改变力的方向。
工厂中常用的差动滑轮(俗称手拉葫芦)也是一种滑轮组。滑轮组在起重机、卷扬机、升降机等机械中得到广泛应用。
滑轮可分为工作滑轮和平衡滑轮,是可以绕着中心轴转动的常用机械。
演示滑轮组(J2121型),测力计2个及2个以上,钩码,细绳及支架。
1.取一细绳跨过滑轮,细绳的一端固定在支架或横梁上,另一端系在测力计的钩上。测力计拉动细绳,滑轮随之移动,这样的滑轮叫动滑轮。
2.在滑轮框架的钩上挂钩码,使滑轮两边的两根细绳在竖直方向上,手通过测力计拉住绳子的一端。当滑轮平衡、或将滑轮和它下面的钩码一起匀速提升,记下测力计的读数。改变钩码重,重复以上实验,并记下测力计的读数。
3.实验结果表明,在实验误差允许的范围内,测力计读数仅为钩码重的一半。由此可以得出结论:使用动滑轮能省一半力。
4.按图1.47-3所示,用两个相同的测力计吊住绳子的两端,并使滑轮两边的绳子保持竖直,测力计指针不与标尺相碰。可以看到,两个测力计的读数相等,并且两个读数之和等于动滑轮和钩码的总重。若滑轮本身重可以忽略,则动滑轮两边的每根细绳所承受的力是相等的,并且承担所挂物体重的一半。
实验的演示中,会出现测力计读数偏大的情况,这是由于在提升重物的同时还要提升动滑轮,还要克服摩擦力的缘故与滑轮有关的摩擦有两种,一种是滑轮和转轴之间的摩擦;另一种是绳子与滑轮的摩擦。
还有一种是绳子的自重,初中物理计算题中一般忽略绳重及摩擦。