选择特殊符号
选择搜索类型
请输入搜索
化学反应工程是化工类专业的一门专业主干课、核心课程。化学反应工程涉及物理化学、化工热力学、化工传递过程、优化与控制等,知识领域广泛、内容新颖,对于培养学生的反应工程基础、强化工程分析能力具有十分重要的作用。
课程教学突出阐述反应工程理论思维方法,重点讨论影响反应结果的工程因素(如返混、混合、热稳定性和参数灵敏性等),并结合开发实例进行分析,培养学生应用反应工程方法论解决实际问题的能力。围绕创新教育这一主题,明确培养学生创新思维与创新能力的教学目标,并在教学内容、教学方法上进行改革,改变传统教学模式,将培养创新思维和创新能力溶入课程教学过程中,探索适宜培养创新人才的“化学反应工程”教学内容、教学方法。
重点与难点:化学反应工程课程内容的重点是阐明基本原理,向学生介绍反应工程中的最基本概念、理论和研究方法,所以我们在开设本课程时,精选了化学动力学、间歇反应器、理想流动反应器、返混、反应过程中的热量和质量传递、复杂反应选择性、反应器热稳定性等主要内容,突出影响反应过程结果的工程因素,并按温度效应和浓度效应讨论展开,力求表达清楚,确切阐述,为学生今后开发反应过程与反应器打下扎实的理论基础。
课程难点是掌握化学反应工程的基本观点和工程思维方法,培养学生分析和解决工程问题的实际能力。在教学中重视基本概念、基本理论和工程分析方法的传授。把握反应的温度效应和浓度效应,体现工程因素和工程措施的对不同反应的具有不同的影响效应,这也是贯穿化学反应工程基本内容的主线。一方面突出化学反应工程学科的共性问题,即影响反应结果的工程因素,如返混、预混合、质量传递和热量传递等,另一方面突出反应工程理论思维方法,即工程因素通过影响反应场所温度与浓度而改变反应结果,使学生了解实际反应过程开发中过程的分解与综合、个性与共性之间的关系,从而增强工程分析和解决工程问题的能力。反应工程理论思维方法揭示了反应器型式、操作方式、操作条件等实际上是通过工程因素来实现对反应场所温度和浓度的影响。在教学过程中重视结合相应的思考题、例题教学,并进行必要的习题练习,以期学生将所学内容融会贯通,举一反三,学以致用。
化学反应工程的早期研究主要是针对流动、传热和传质对反应结果的影响,如德国G.达姆科勒、美国O.霍根和K.M.华生以及苏联Α.Д.弗兰克-卡曼涅斯基等人的工作。当时曾取名化工动力学或宏观动力学,着眼于对化学动力学作出某些修正以应用于工业反应过程。1947年霍根与华生合著的《化工过程原理》第三分册中论述了动力学和催化过程。50年代,有一系列重要的研究论文发表于《化学工程科学》杂志,对反应器内部发生的若干种重要的、影响反应结果的传递过程,如返混、停留时间分布、微观混合、反应器的稳定性(见反应器动态特性)等进行研究,获得了丰硕的成果,从而促成了第一届欧洲化学反应工程讨论会的召开。
50年代末到60年代初,出版了一系列反应工程的著作,如S.M.华拉斯的《化工动力学》,O.列文斯比尔的《化学反应工程》等,使学科体系大体形成。此后,一方面继续进行理论研究,积累数据,并应用于实践;另一方面,把应用范围扩展至较复杂的领域,形成了一系列新的分支。例如:应用于石油炼制工业和石油化工中,处理含有成百上千个组分的复杂反应体系,发展了一种新的处理方法,即集总方法(见反应动力学);应用于高分子化工中的聚合反应过程,出现了聚合反应工程;应用于电化学过程,出现了电化学反应工程;应用于生物化学工业中的生化反应体系,出现了生化反应工程;应用于冶金工业的高温快速反应过程,出现了冶金化学反应工程等。
这一学科是在1957年第一届欧洲化学反应工程讨论会上正式确立的。促成该学科建立的背景是:因化学工业的发展,特别是石油化学工业的发展,生产趋于大型化,对化学反应过程的开发和反应器的可靠设计提出迫切要求;化学反应动力学和化工单元操作的理论和实践有了深厚的基础;数学模型方法和大型电子计算机的应用为反应工程理论研究提拱有效的方法和工具。
是的
烧碱:SiO2 + 2NaOH = Na2SiO3 + H2O:SiO2 + 4HF = SiF4↑ + 2H2O焦炭:3C + SiO2 = 2CO↑ + SiC
酒精灯燃烧的温度是600,算是加热,怎么会低于它呢?常常说的高温是只600摄氏度以上,有些资料上还将高温定义为1000摄氏度以上。但一般都以600摄氏度以上为准。
随着中国国民经济的快速发展,一方面中国化学过程工业面临良好的发展机遇,但同时面临重要的挑战,主要来自资源,环境和自主创新能力三方面。
工业反应过程中既有化学反应,又有传递过程。传递过程的存在并不改变化学反应规律,但却改变了反应器内各处的温度和浓度,从而影响到反应结果,例如影响到转化率和选择率(见化学计量学)。由于物系相态不同,反应规律和传递规律也有显著的差别,因此在化学反应工程研究中通常将反应过程按相态进行分类,如区分为单相反应过程和多相反应过程,后者又可区分为气固相反应过程、气液相反应过程以及气液固相反应过程等。
主要用于进行工业反应过程的开发、放大和操作优化以及新型反应器和反应技术的开发。
①工业反应过程的开发和放大 在化学反应工程学科建立以前,工业界广泛采用的方法是逐级经验放大的方法。其步骤是,首先在小型试验中进行反应器的选型和确定优越的工艺条件(温度、压力、浓度、流速和反应时间度),然后自小至大进行多次中间试验,直至工业规模。由于全部实验带有经验性质,而且试验所用设备的尺寸逐级增大,因而取名为逐级经验放大。中间试验往往耗资大而历时久。化学反应工程学科建立以后,逐步形成一套新的数学模型方法。这种方法是首先在小型试验中确定动力学模型;然后在冷模试验中确定各类候选反应器的传递模型;进而在计算机上进行各候选反应器内反应过程的模拟研究,即在各种不同的工艺条件下对反应器数学模型进行数值求解,预测反应结果,并据此进行反应器的选型,优选工艺条件并设计反应器。采用这种方法时,往往也需要进行适当规模的中间试验,目的是为了“检验”和“修正”模型,以及考察模型中难以包括的因素(如微量杂质的积累,焦油的生成,材质的腐蚀,颗粒粉碎,等等)可能产生影响。而不是为了自小至大进行逐级放大。时下,逐级经验放大和数学模型两种方法同时并存,各有适用范围。但是,即使是逐经级验放大方法,也常是以化学反应工程的理论为指导,而不再是纯经验性的了。
②工业反应过程的操作优化 实际工业反应过程未必在最优的条件下操作。即使设计是优化的,在实施时往往有许多难以预料的因素,使原定的优化设计条件对实际操作未必是优化的。运用化学反应工程理论对现行的工业反应过程进行分析,结合模拟研究,可找出薄弱环节之所在和进一步调优的方向,通过调节和改造以获得较大的经济效益。
③新型反应器和反应技术的开发 反应工程的理论为新反应器和新反应技术的开发指明了方向,研究者可以据此寻找合理的设备结构和操作方法。例如近几年来出现的新的石油化工裂解技术和各种新型流化床反应器,都得益于反应工程理论的指导。
化学反应工程的研究内容主要包括以下几个方面:
①研究化学反应规律,建立反应动力学模型 亦即对所研究的化学反应,以简化的或近似的数学表达式来表述反应速率和选择率与温度和浓度等的关系。这本来是物理化学的研究领域,但是化学反应工程工作者由于工业实践的需要,在这方面也进行了大量的工作。不同之处是,化学反应工程工作者着重于建立反应速率的定量关系式,而且更多地依赖于实验测定和数据关联。多年来,已发展了一整套动力学实验研究方法,其中包括各种实验用反应器的使用、实验数据的统计处理方法和实验规划方法等。②研究反应器的传递规律,建立反应器传递模型 亦即对各类常用的反应器内的流动、传热和传质等过程进行理论和实验研究,并力求以数学式予以表达。由于传递过程只是物理的,所以研究时可以避免化学反应,用廉价的模拟物系(如空气、水、砂子等)代替实际反应物系进行实验。这种实验常称为冷态模拟实验,简称冷模实验。传递过程的规律可能因设备尺寸而异,冷模实验所采用的设备应是一系列不同尺寸的装置;为可靠起见,所用设备甚至还包括与工业规模相仿的大型实验装置。各类反应器内的传递过程大都比较复杂,有待更深入地去研究。③研究反应器内传递过程对反应结果的影响 对一个特定反应器内进行的特定的化学反应过程,在其反应动力学模型和反应器传递模型都已确定的条件下,将这些数学模型与物料衡算、热量衡算等方程联立求解,就可以预测反应结果和反应器操作性能。由于实际工业反应过程的复杂性,至今尚不能对所有工业反应过程都建立可供实用的反应动力学模型和反应器传递模型。因此,进行化学反应工程的理论研究时,概括性地提出若干个典型的传递过程。例如:伴随着流动发生的各种不同的混合,如返混、微观混合、滴际混合等;反应过程中的传质和传热,包括反应相外传质和传热(传质和反应相继发生)和反应相内传质和传热(反应和传质同时进行)。然后,对各个典型传递过程逐个地进行研究,忽略其他因素,单独地考察其对不同类型反应结果的影响。例如,对反应相外的传质,理论研究得出其判据为达姆科勒数Dα,并已导出当Dα取不同值时外部传质对反应结果的影响程度。同样,对反应相内的传质,也得出了相应的判据西勒模数φ。这些理论研究成果构成了本学科内容的重要组成部分。这些成果一般并不一定能够直接用于反应器的设计,但是对于分析判断却有重要的指导意义。
化学反应工程学科体系已大体形成,理论研究也渐趋完善。在工业应用中,在定性的指导方面已经发挥了很大的作用。但是,与理论研究相比较,反应器内传递过程的实验研究和数据的积累还很薄弱,特别是对于化工生产中经常遇到的多相流动体系研究得还很不够。因此,反应工程的研究需要与多相流体力学和多相传递过程的研究相结合,以便相辅相成。同时,化学反应工程向生化、冶金等领域扩展时还会出现新的理论问题,需要进一步的研究。2100433B
化学反应工程课程是化学工程与工艺类专业的核心课程,是一门涉及物理化学、化工传递过程、优化与控制等知识领域广泛、内容新颖而难点较多的学科,是华东理工大学第一批21门重点建设课程之一。
化学反应工程课程适用于化学工程与工艺类专业学习。
第一章 绪论 1.1 化学反应工程的研究对象和目的 1.2 化学反应工程的研究内容 1.3 化学反应工程研究方法 第一章习题 第二章 化学反应动力学 2.1 化学反应速率的工程表示 2.2 均相反应动力学 第二章习题 第三章 理想间歇反应器与典型化学反应的基本特征 3.1 反应器设计的基本内容和方程 3.2 理想间歇反应器中的简单反应 3.3 理想间歇反应器中的均相可逆反应 3.4 理想间歇反应器中的均相平行反应 3.5 理想间歇反应器中的均相串联反应 第三章习题-1 第三章习题-2 第四章 理想流动管式反应器 4.1 理想流动管式反应器的特点 4.2 理想流动管式反应器基本方程式 4.3 空时、空速和停留时间 4.4 反应前后分子数变化的气相反应 第四章习题 第五章 连续流动釜式反应器(CSTR) 5.1 连续流动釜式反应器的基本设计方程 5.2 连续流动釜式反应器中的均相反应 5.3 连续流动釜式反应器中的浓度分布 5.4连续流动釜式反应器中的返混 |
第五章习题 阶段测试 第六章 反应器中的混合现象 6.1 混合现象的分类 6.2 停留时间分布及其性质 6.3 连续釜式反应器中的固相反应 6.4 微观混合及其对反应结果的影响 6.5 非理想流动模型 6.6 非理想流动反应器计算 第六章习题 第七章 化学反应过程的优化 7.1 简单反应过程反应器型式的比较 7.2 自催化反应过程的优化 7.3 可逆反应过程的优化 7.4 平行反应过程的优化 7.5 串联反应过程的优化 第七章习题 第八章 气固催化反应过程的传递现象 8.1 气固催化反应过程的研究方法 8.2 等温条件下催化剂颗粒外部传质过程 8.3 等温条件下催化剂颗粒内部传质过程 8.4 固体催化剂的工程设计 第八章习题 第九章热量传递与反应器的热稳定性 9.1 热稳定性和参数灵敏性的概念 9.2 催化剂颗粒温度的热稳定性 9.3 连续搅拌釜式反应器的热稳定性 9.4 管式固定床反应器的热稳定性 |
(注:课程大纲排版从左到右列)
化学反应工程教学改革与建设得到了华东理工大学的重视和支持,多次被评为A级课程,2004年被评为上海市精品课程,2005年被评为国家级精品课程,2014年被评为国家级精品资源共享课,2020年入选国家级一流本科课程线上一流课程。课程建设与教学改革先后获上海市优秀教学成果一等奖、二等奖和三等奖。
化学反应工程在华东理工大学具有雄厚的基础,有一批在化学反应工程领域专家;有两本化学反应工程教材与配套习题集,有正式出版的化学反应工程多媒体课件,其中“化学反应工程”(4th,国家“十一五”规划教材)2007年被推荐为全国精品教材,“化学反应工程”(5th)2012年列为首批国家“十二五”规划教材,化学反应工程教学在中国国内已有较为重要的影响。
化学反应工程课程有一支10人的教师队伍,中青年教师成为课程教学的中坚力量,其中有校级主讲教授1名,校级主讲教师1名,曾有多名教师获得过宝刚教育奖、上海市育才奖、校课堂教学优秀奖、校教学名师、青年教师30佳、校首届教育贡献奖等。
化学反应工程课程教学团队的全体教师,根据人才培养目标,按照优质课程要求,在开课层次、教学内容、教学方法、教材建设、现代教育技术、实验教学、教师队伍建设、考试方法、优秀生培养等方面,进行了一系列改革实践,达到了预期的目标。中国国家教育部质量工程对创新人才培养提出了新的要求,华东理工大学也在化学反应工程教学实践中,积极探索健全“化学反应工程”课程教学新体系,提高教学效果,加强学生创新能力的培养,按照优质精品课程的建设目标,提升化学反应工程课程教学水平。