选择特殊符号
选择搜索类型
请输入搜索
2018年9月17日,《海洋观测规范第1部分:总则》发布。
2019年4月1日,《海洋观测规范第1部分:总则 》实施。
主要起草单位:国家海洋标准计量中心 、国家海洋技术中心 、国家海洋信息中心 、国家海洋局北海分局 。
主要起草人:袁玲玲 、司建文 、王颖 、孙仲汉 、武双全 、王炜阳 。 2100433B
先说个建议:地质读研的话 就读博,研究生跟本科没多大差别青岛所不错,跟同济差不多,肯定能学到真本事,笔试之前不需要跟导师联系,1:1.2进面试后再联系就行。至于学什么,一共有四个专业,可以到海洋所网站...
国家海洋局海洋研究所(国家海洋局):于1964年经国务院批准正式成立。是国家海洋规划、立法、管理的政府行政管理机构。属国土资源部的国家局。国家海洋局是国土资源部管理的监督管理海域使用和海洋环境保护、依...
研究生还是学生,不管博士硕士都没有编制的,海洋局的研究所没有博士点,导师是别的学校招博士,所以你要是想硕博连读还是去中科院海洋所好,两个单位的待遇应该都不错,还要看导师的经费情况和大方程度。不过考国家...
成都市道路指路标志系统第1部分总则
成都市道路指路标志系统第1部分总则
成都市道路指路标志系统第1部分总则2
四 川 省 ( 区 域 性 ) 地 方 标 准 DB510100/T 129.1 —2013 成都市道路指路标志系统 第 1部分:总则 2013 - 12 - 25发布 成 都 市 质 量 技 术 监 督 局 发 布 DB510100/T 129.1 —2013 I 目 次 前言 ................................................................................ II 1 范围 .............................................................................. 1 2 规范性引用文件 .................................................................... 1 3 术语与
2019年4月4日,《公共场所设计卫生规范第1部分:总则》发布。
2019年11月1日,《公共场所设计卫生规范第1部分:总则》实施。
随着航天和航空遥感技术的发展,航天和航空遥感技术逐渐应用于海洋探测,形成天基海洋环境遥感。天基海洋遥感具有观测范围广、重复周期短、时空分辨率高等特点,可以在较短时间内对全球海洋成像,可以观测船舶不易到达的海域,可以观测普通方法不易测量或不可观测的参量,成为继地面和海面观测的第二大海洋观探测平台,也成为发达国家竭力争夺的海洋高科技之一。近年来,美国、欧洲、日本等航天大国相继制定了相应的海洋发展规划。
国外已经陆续发射了多颗海洋水色卫星、海洋地形卫星和海洋动力环境卫星。
1)SeaStar卫星
1997年8月,美国发射了SeaStar海洋水色卫星。星上装载有第二代海洋水色传感器,共有8个通道,前6个通道位于可见光范围,7、8通道位于近红外,中心波长分别为765nm和865nm;地面分辨率为1.1km,该卫星现仍在运行。
2)EOS卫星系列
EOS系列中的EOS-AM卫星主要用于陆地和大气观测、物理和化学、气候环境调查。第一颗EOS-AM卫星Terra于1999年12月18日发射。EOS-AM1卫星装载五个主要仪器:中分辨率成像光谱仪(MODIS-N)、先进星载热发射和反射辐射器(ASTER)、多角度成像光谱仪(MI-SR)、云和地球辐射能量系统(CERES)和对流层污染仪(MOPITT)。EOS-PM卫星共计三颗,第一颗EOS-PM卫星Aqua于2002年5月4日发射;EOS-PM2卫星Aura于2004年7月15发射;EOS-PM3于2010年12月发射。
EOS-PM卫星装载的仪器有:先进的微波探测器(AMSU)、微波湿度探测器(MHS)、云和地球辐射能量系统(CERES)、中分辨率成像光谱仪(MODIS-N)、大气红外探测器(AIRS)、多通道微波成像辐射器(MIMR)。
3)Geosat卫星
1985年3月,美国海军发射了Geosat大地测量卫星,也是一颗海洋地形卫星,星上装载的唯一传感器是一部Ku波段(13.5GHz)的雷达高度计。该卫星以军用为主,用于测量海洋表面有效波高,研究地球重力场、海潮和海面地形等,鉴于卫星轨道误差大(50cm)和数据保密等原因,没有得到广泛应用。1998年2月,美国海军又发射了Geosat的后继卫星GFO-1,运行至今。
航空海洋探测采用固定翼飞机和无人机为传感器载体,具有机动灵活、探测项目多、接近海面、分辨率高、不受轨道限制、易于海空配合而且投资少等特点,是海洋环境监测的重要遥感平台,通过搭载的微波和光学遥测设备,能够实时获取大气海洋环境资料。在军事上,由于无人机可有效减少人员伤亡,得到了广泛应用。典型代表有美国的“全球鹰”、“捕食者”,澳大利亚的Aerosonde等无人机。
经过多年的发展我国已建成了包括海洋站、浮标、调查观测船、海监飞机,以及利用国外遥感卫星资料的海洋环境初级监测网,但是和国外发达国家相比还存在着以下两个方面的不足:
1)起步晚,能力弱
我国的海洋科学研究起步较晚,海洋观测能力建设与国际发达国家相比差距较大,观测内容少,精度低,无法满足现代海洋军事活动的需要。观测仅以岸基站常规监测为主,主要依靠国家海洋局的若干观测站、固定浮标以及少量ARGO浮标,以及近年来建立的海底观测网,缺少海上固定式长期海洋综合观测平台,无法满足海洋科学研究长期、连续、实时、多学科同步的综合性观测要求。而美国有基于NOAA的90个浮标、60多个海岸自动观测网以及多源卫星构成的海洋动力环境监测网。
2)时空覆盖范围与监测尺度远远不够
我国有一系列关系国计民生和国防安全的海洋问题亟待研究与解决,但是由于缺少水下观测节点,加之国外遥感卫星资料来源十分有限,因此对第二岛链附近相关海域、台湾周边、南海及重要出海通道的监测能力十分薄弱;缺少水下自主浮动节点,只能观测点、面或某一层次的海洋环境要素,立体探测能力几乎是空白,缺乏重要海域的长期断面观测数据;和海军活动、水下资源开发密切相关的深、远海立体监、探测技术尚处于空白阶段,无法满足我海军走向大洋,成为蓝水海军的需求。未来需要在以下几个方面应加大投入力度:
1)大力发展基于卫星的全球海洋环境探测体系,同时发展基于无人机的区域海洋环境机动探测系统,两者相辅相成,优势互补。
2)建立高密度立体观测网络,从总体上看,国际海洋观测的目标是建立全球联网的立体观测系统,已发展起包括卫星遥感、浮标阵列、海洋观测站、水下剖面、海底有缆网络和科学考察船的全球化观测网络。因此要有针对性地在关键海区建立多参数长期、立体、实时监测网,有效、连续地获取和传递海洋长时间序列综合参数。要加大重要现象与过程机理的强化观测力度,综合运用各种先进的传感器和观测仪器,如将声学、遥感等手段更多地运用于海洋观测,使得点、线、面结合更为紧密,对区域进行有效监控。
3)发挥各行业优势提升科技创新水平,由于海洋监测技术涉及的学科繁多,且一个单位或一个团体又不可能在海洋监测技术各学科都处于领先地位,因此就必须先梳理海洋观测技术核心技术,紧跟该领域世界发展潮流[9~11],提出一批极具核心竞争力的关键技术,在全国范围内广泛寻找有实力的研究队伍,通过一定的组织形式,将海洋科研院所、高校和军工单位、地方企业有序的联合起来,充分发掘海洋监测技术与其它行业的共性技术,相互借鉴,取长补短,构建一支高效稳定的海洋观测技术科研团队和人才梯队以不断提升海洋观测的竟争力。 2100433B