选择特殊符号
选择搜索类型
请输入搜索
对聚变用第一壁材料中子辐照引发的缺陷微观结构演化进行第一性原理结合分子动力学模拟计算研究。对辐照作用下可迁移空位团/间隙原子团的准平衡态演化过程机理以及W合金与缺陷相互作用等进行研究。主要包括: 辐照作用下材料离位损伤产生演化过程动力学计算。应用分子动力学结合第一性原理计算方法模拟辐照作用下体心立方W中产生的晶体点缺陷产生形成过程,离位阈能的计算、间隙原子结构稳定性的系统讨论。对与<111>间隙构型非常接近的<11h>构型存在性作出物理机理解释。高温退火过程中点缺陷的复合、扩散动力学研究。包括对Frenkel缺陷对的形成和迁移复合计算,复合区域及扩散系数的温度效应,为点缺陷复合机制完成前期基础。发现111型间隙原子与空位的复合区域为一个空间椭球,且该椭球半径随反应温度升高而增加。 计算钨拉伸弹性形变、塑性形变、强化形变和断裂等四个阶段。得到杨氏模量、屈服应变和屈服应力。塑性形变时生成的FCC和HCP结构的能量高于BCC结构,并使系统保持较低的应力水平。在塑性形变后期,长程有序周期结构孪生带的生长,使系统应力呈周期性振荡变化。在强化相持形变阶段,镶嵌在孪生带HCP结构中的其它无序结构在应力作用下生长,产生孔洞产生并吸收能量,使系统晶格断裂。 W基合金元素对空位缺陷迁移影响研究。考查合金元素对空位、间隙的作用机制。发现合金元素对空位的迁移均表现为较有利的作用,其中Zr合金元素对空位的影响较为明显,迁移阈能仅为0.859eV。通过有效体积的方式解释空位迁阈能,且发现Ta的浓度增加对空位表现更为有利的作用。W合金中间隙结构稳定性。通过哑铃对形成能发现,Re、Zr作为间隙原子时具有<110>哑铃对稳定结构,而Ta、Hf、Mo、Nb作为间隙结构时<111>哑铃对具有更加稳定结构。Re更加有助于自间隙结构迁移,Hf有助于Hf-W哑铃对迁移。 结论为探索辐照缺陷产生机理、提高W基合金抗辐照性能提供理论基础,为未来我国聚变材料设计及性能评价指标做出参考。 2100433B
研究聚变环境下中子辐照引发的材料中各种物理过程和微观机理是未来核聚变能实现的重要环节之一。本项目采用分子动力学计算方法,系统研究高能粒子辐照对面向等离子体材料W和结构材料Fe的辐照缺陷损伤效应。课题将对体心立方金属W及Fe中“空位-间隙”形成的缺陷生长过程进行模拟计算,对空位团/间隙位错的准平衡态发展演化过程以及缺陷寿命等相关机理分析研究;同时还将对材料离位损伤缺陷与H/He杂质的相互作用进行讨论,研究杂质对材料缺陷稳定性的影响及规律。本研究为聚变材料的选择设计提供重要的理论参考依据。
因为重力是不变的,弹力是与位移X有关,当这两个力同时取微分后,重力的微分为零,导致公式中就没有重力了。能量对时间的导数是能量随时间的变化,能量对距离的导数是能量随距离的变化。可以用能量法和牛顿二定律。...
断裂力学是研究带裂缝材料的断裂韧度,以及带裂缝的构件在各种条件裂缝的扩展、失稳和断裂的规律。许多学者试图用断裂力学的方法来处理,研究活动十分活跃,但主要工作都集中于单个裂缝的应力应变场的分布问题,对于...
飞行动力学(AIRCRAFT DYNAMICS ) 是研究飞行器在空中的运动规律及总体性能的科学。所有穿过流体介质或者是真空的运动体,统称为飞行器。主要包括航天器、航空器、弹箭、水下兵器等。研究弹...
等离子体喷射轴心铝丝的磁流体动力学模拟
使用自编的一维双区MHD程序对POW构型从铝衬套汽化形成等离子体然后在电流的箍缩作用下箍缩到轴心铝丝(或铝等离子体)上并对其进行压缩的整个箍缩过程进行了计算。装置参数使用LANLPegasusl装置参数。即电压V=88.0kV,电容C=216UF,电阻R=0.30mΩ,总电感L=36nH,电容器总储能为1MJ。
等离子体喷射轴心铝丝的磁流体动力学模拟
采用一维拉格朗日磁流体力学(MHD)程序研究了等离子体喷射轴心单丝的物理现象,给出了碰撞后铝丝受热膨胀和最后箍缩到轴心的整个过程图像,指出这一设计方法能在轴心丝上获得较高的电流上升率和较高的轴心压缩密度,并还给出了箍缩所得的功率和能量曲线。
面心立方晶格金属和合金低温塑性优于体心立方晶格金属的原因是面心立方金属允许位错通过的滑移面比体心立方金属的多,这些滑移面允许位错穿过晶体,而使金属获得延性 。
玻璃辐照损伤glass irradiatian damage又称玻璃辐射损伤、指各种射线辐照所引起的玻璃结构变化以及相应的物理性质(如密度、折射率、电阻、导热系数等)的变化。例如:石英玻璃经人ail }电子照射会引起密度_f}升,键角变小,所含痕量杂质有可能形成电子陷阱,孔穴陷阱和色心等;含银的磷酸盐玻璃在辐照后能放出特征的橙色荧光,且荧光与辐射剂量成线性关系:利用这一效应可制成辐射剂量玻璃。
2100433B
研究纳米尺度的硬质点、气泡,以及结构相变等因素对金属材料在高应变率加载下损伤演化和动态断裂的影响。采用多种实验技术,包括:气体炮和脉冲强激光加载手段,配合测量板状样品在冲击波压缩和卸载过程中的自由面速度历史,X射线闪光照相观测,以及软回收样品的细观组织分析,获取层裂破坏的演化发展信息。基于实验结果,建立物理模型,开展数值模拟,预期对层裂破坏现象的物理过程和发展规律获得较全面的理解和认识。 2100433B