选择特殊符号
选择搜索类型
请输入搜索
本项目针对研制III族氮化物光电子器件的关键工艺--激光剥离技术进行研究。该技术是利用激光辐照使蓝宝石与GaN外延片界面处的GaN分解,进而实现蓝宝石与GaN外延薄膜的分离。通过研究激光剥离工艺参数对剥离后GaN表面的影响,实现激光剥离GaN表面纳米级粗糙度的控制。该技术可用于研制GaN基发光二极管(LED)、共振腔发光管(RCLED)以及面发射激光器(VCSEL)等新型III族氮化物半导体光电子器件。这些器件在照明、通信、存储、显示等领域具有广阔的应用前景。通过本项目的研究,主要取得了以下几个方面的进展: (1)利用有限元分析法研究了激光剥离过程中GaN和蓝宝石中的热传输机理, 得出了激光剥离过程中GaN材料内瞬态温度场分布函数,为激光剥离工艺参数的选取提供了重要理论依据。 (2)研究了激光剥离工艺参数对激光剥离后GaN表面的影响,分析了激光剥离GaN表面不平整及出现损伤的原因,实现了GaN外延片与蓝宝石衬底的完整剥离,剥离后GaN表面平整、无裂缝,表面平整度小于10nm。 (3)研究了湿法腐蚀、化学机械抛光、ICP刻蚀技术对激光剥离GaN表面的影响,实现了激光剥离GaN表面纳米级平整度的控制。 (4)获得了亚纳米平整度的激光剥离GaN表面,在此基础上制作了高品质的氮化物微谐振腔,实现了GaN 基VCSEL低阈值光泵激射。 (5)研制出了多种具有优良散热特性的GaN基LED器件,为将来开发新型的实用化LED器件提供了新的方案。 (6)研制出了具有高Q值的电注入氮化物共振腔器件,为研制GaN基VCSEL和RCLED等新型微结构光电子器件提供了新的途径。 2100433B
利用激光辐照实现蓝宝石与GaN外延片界面处纳米级GaN的分解,以此来实现蓝宝石与GaN外延片的分离,获得具有纳米级粗糙度GaN表面以及可以重复利用的蓝宝石衬底。通过研究激光功率密度、光斑形状、扫描轨迹、键合状态以及GaN外延片结构等参数对剥离样品的影响,并结合理论模拟结果,寻找获得晶体完整、表面平整、均匀性好的激光剥离工艺条件,实现激光剥离GaN表面纳米级平整度的控制。结合晶片键合技术,将LED转移至高电导率、热导率的衬底上,可以实现GaN基转移衬底LED的制作,从而解决GaN基大功率LED效率、散热及成本的瓶颈,为加快半导体照明产业化进程做出贡献。另外,利用激光剥离技术,还可以研制GaN基垂直腔面发射激光器(VCSEL)及共振腔发光二极管(RCLED)等新型、高性能器件,为GaN基发光器件开辟新的应用领域。
“华翔”品牌在走过的十多年间,得到了政府领导,技术专家与广大客户与消费者的赞赏和支持,03、04年期间,国家质检总局对全国贴面胶合板、细木工板的质量抽查中,居国内装饰板材质量排行榜的首位。在国内率先通...
纳米,是一种长度单位,符号为nm。1纳米=1毫微米=10埃(既十亿分之一米),约为10个原子的长度。假设一根头发的直径为0.05毫米,把它径向平均剖成5万根,每根的厚度即约为1纳米。 &n...
从尺寸大小来说,通常指产生物理化学性质显著变化的细小微粒的尺寸在0.1微米以下(注1米=100厘米,1厘米=10000微米,1微米=1000纳米,1纳米=10埃),即100纳米以下的粉体
激光剥离GaN表面的抛光技术
激光剥离(LLO)技术是研制新型氮化镓(GaN)基谐振腔结构光电子器件的关键技术。然而LLO后的GaN表面往往具有较大的粗糙度,而制作谐振腔结构器件需要很高的表面平整度,因此需要对LLO后的GaN表面进行抛光。分别采用金刚石粉抛光液和胶粒二氧化硅抛光液进行机械抛光和化学机械抛光(CMP),并对比了两种方法获得的抛光结果,研究发现前者会在抛光后的GaN表面引入划痕,而采用后者可以得到亚纳米级平整度的表面。进一步的实验结果表明,胶粒二氧化硅抛光液同样适用于图形化衬底外延片激光剥离后的GaN表面抛光。
激光路面平整度检测系统
激光路面平整度检测系统——为提高路面平整度检测水平,提出了基于基准传递原理的路面平整度检测方法,给出了采用5个激光位移传感器检测路面纵断面相对标高的计算公式,在不同等级路面上与精密水准仪测量方法进行了对比试验。结果表明,依据基准传递原理的路面...
激光表面清理指利用激光,以蒸发、液体飞溅、应力剥离等方式,去除材料表面的污染物、油漆或涂层的方法。
根据材料的不同种类,调节激光功率密度、激光辐照时间等工艺参数,增加一定的气氛条件,可进行激光表面淬火(相变硬化)、激光表面熔凝、激光表面合金化等激光表面处理。其特点如下:
1、激光表面淬火,主要通过相变硬化,提高表面硬度和耐磨性;
2、激光表面熔凝,主要通过在高功率密度激光束作用下,材料表面快速熔化并激冷,获得极细晶粒组织,显著提高硬度和耐磨性;
3、激光表面合金化,利用多种方法,将添加元素置于基材表面(或吹人合金化气体),在保护气氛下,激光将二者同时加热熔化,获得与基材冶金结合的特殊合金层。
《公路交通科技名词》第一版。2100433B