选择特殊符号

选择搜索类型

热门搜索

首页 > 百科 > 建设工程百科

结构塑性极限分析

结构塑性极限分析,又称结构破损分析,是对结构在塑性极限状态下的特性的研究,塑性力学的研究内容之一。
当外载荷达到某一极限值时,结构即变成几何可变机构,变形无限制增长,从而失去承载能力,这种状态称为结构的塑性极限状态。在塑性极限分析中,由于不考虑弹性变形而使分析过程大为简化,且所得的塑性极限载荷与考虑弹塑性过程所得到的结果完全相同。凡是在极限条件中起作用的内力,称为广义应力。当某点的广义应力满足极限条件时,表示结构上该点已进入屈服状态;当结构上有若干截面达到屈服状态时,结构即变成机构,开始无限制地增加变形,结构达到了极限状态。

结构塑性极限分析基本信息

结构塑性极限分析研究方法

静力和机动条件

为了解决上述问题,除了要知道材料的有关参数外,还应知道静力和机动条件,即结构的的外力和几何约束边界条件以及结构的材料常数。这些条件包括:①屈服条件。即结构出现屈服时其广义力(极限条件中所包含的弯矩、薄膜力或轴向力)应满足的条件。②破损机构条件,即在极限状态下结构的运动规律,或结构失去承载能力时的运动形式。③平衡条件。④几何条件。其中①、②两个条件应建立在理论分析和实验研究的基础上,是结构极限分析的物理依据;③、④两个条件是结构处于弹性状态或塑性状态都必须满足的条件。如果所求得的解满足以上全部条件而且满足所给的边界条件,则该解即为极限分析的完全解。

重要概念

由于不容易得到完全解,在极限分析理论中发展了两个定理,即下限定理和上限定理:①下限定理:所有与静力容许应力场对应的载荷中的最大载荷为极限载荷。②上限定理:所有与运动容许位移场对应的载荷中的最小载荷为极限载荷。如果一个载荷既是极限载荷的上限,又是极限载荷的下限,则这个载荷必满足极限分析中的全部条件。用以上两个定理求极限载荷的方法分别称为静力法和运动法。

对于复杂结构,为了求出极限载荷,可以放松对极限条件的要求,即对极限条件进行简化,以便找出解的上限或下限。常用的有最大法向应力条件、单矩或双矩弱作用的屈服条件。

对于梁、桁架、刚架、轴对称圆板和旋转轴对称薄壳,都已找到了大量完全解。对于较复杂的结构,都可用静力法或运动法分别找出下限解或上限解。

下限定理

下限定理可表述为:与静力容许场对应的外载荷不大于真实的极限载荷。所谓静力容许场是指满足平衡方程和外力边界条件并且不违背屈服条件的应力场。下限定理提出了结构不破坏的必要条件,用它可计算结构承载能力的下限,这样的下限有无穷多个。由于结构不破坏时所能承受的最大载荷与结构的真实极限载荷最接近,所以应选取由下限定理求出的极限载荷下限中最大的一个作为极限载荷的近似值。按平衡条件、屈服条件用下限定理求极限载荷最大下限的方法称为极限分析的静力法。

上限定理

上限定理可表述为:与机动容许场对应的外载荷不小于真实的极限载荷。所谓机动容许场是指满足几何约束条件并能形成破损机构的位移速度场。外力在此速度场上作功的功率大于等于结构内部的耗散功率。上限定理提出了结构破坏的充分条件,用它可求得极限载荷的上限,这样的上限也有无穷多个。在用上限定理求极限载荷时,由于假设结构已经破坏,所以应选取所求得的极限载荷上限中最小的一个作为极限载荷的近似值,它和真实的极限载荷最接近。只考虑机动方面的要求,而不考虑屈服条件和平衡条件的要求,按上限定理求极限载荷最小上限值的方法称为极限分析的机动法。对于复杂的结构或复杂的载荷分布,常须用实验方法得出一个破坏机构的形态,据此求出极限载荷的一个较好的上限值。如果一个载荷既是极限载荷上限,又是极限载荷的下限,它便是完全解的极限载荷。

简化屈服条件

除用静力法和机动法以外,结构极限载荷的上限和下限还可以通过简化屈服

条件求得。此法的理论依据是:在结构的任何部分提高材料的屈服极限,都不会降低结构的承载能力;而在结构的任何部分降低材料的屈服极限,都不会提高结构的承载能力。在广义应力空间中,屈服条件的数学表达式往往是非线性的,联合求解这种非线性的方程和复杂结构的平衡微分方程在数学上往往有困难,因此,用线性的屈服条件代替非线性的屈服条件并找出复杂结构的近似解,是求解极限载荷上、下限的有效方法。例如,在图中所示的广义应力Q1Q2的二维平面中,曲线A代表实际的屈服条件,多边形B和多边形C分别代表线性化了的内接和外切的近似屈服条件。按多边形B计算得到的极限载荷是实际极限载荷的下限,而按多边形C计算得到的极限载荷是实际极限载荷的上限。

静定结构的极限荷载

对于静定结构,由几何组成分析的知识,可知其自由度等于0,我们在进行弹塑性分析时,若在结构中出现塑性铰,则体系在加载的方向上,将相应地会多出一个自由度,体系形成一个可动的机构。因此,对于静定结构,体系在任一截面上出现塑性铰,则破坏。此时的荷载即为该静定结构的极限荷载。

查看详情

结构塑性极限分析造价信息

  • 市场价
  • 信息价
  • 询价

PH分析

  • 型号:TPH21AC+TPH-S0C10
  • 天健创新
  • 13%
  • 天健创新(北京)监测仪表股份有限公司
  • 2022-12-06
查看价格

总磷分析

  • 型号:TEM-TP9000
  • 天健创新
  • 13%
  • 天健创新(北京)监测仪表股份有限公司
  • 2022-12-06
查看价格

SS分析

  • 型号:TSS10AC+TSS-S0C10
  • 天健创新
  • 13%
  • 天健创新(北京)监测仪表股份有限公司
  • 2022-12-06
查看价格

COD分析

  • 型号:TEM-COD9000
  • 天健创新
  • 13%
  • 天健创新(北京)监测仪表股份有限公司
  • 2022-12-06
查看价格

氨氮分析

  • 型号:TEM-NH3N9000
  • 天健创新
  • 13%
  • 天健创新(北京)监测仪表股份有限公司
  • 2022-12-06
查看价格

Pcm通道分析

  • 20-400Hz
  • 台班
  • 韶关市2010年7月信息价
  • 建筑工程
查看价格

逻辑分析

  • K2016通道
  • 台班
  • 韶关市2010年7月信息价
  • 建筑工程
查看价格

塑性填料

  • t
  • 广东2021年全年信息价
  • 水利工程
查看价格

塑性填料

  • t
  • 广东2020年全年信息价
  • 水利工程
查看价格

谐波分析

  • F41
  • 台班
  • 韶关市2010年7月信息价
  • 建筑工程
查看价格

塑性粘土

  • 塑性粘土
  • 100m³
  • 1
  • 含税费 | 含运费
  • 2010-08-14
查看价格

结构化分析软件

  • 大华DH-IVS-VS8XYZ
  • 1套
  • 1
  • 大华
  • 中高档
  • 不含税费 | 含运费
  • 2021-11-02
查看价格

智能分析结构化板卡授权-8颗

  • 智能分析结构化板卡授权-8颗
  • 2块
  • 1
  • 中档
  • 含税费 | 含运费
  • 2022-06-30
查看价格

视频结构化分析服务器

  • 1.名称:视频结构化分析服务器 2.品牌:徽粤大海/DHWL 3.型号:DHWL-SER-JCBG02014.产地:中国5.功能参数:1、视频结构化处理,含视频人车分离、车辆二次分析;2、单服务器
  • 1套
  • 3
  • 高档
  • 不含税费 | 含运费
  • 2020-10-23
查看价格

视频结构化分析服务器

  • 产品性能:智能分析性能(以下活动目标(车辆、人)分析模式、治安场景图片分析性能(一图一目标)为"或"的关系):活动目标(车辆、人)分析模式:最高64路1080P实时流并发分析最高64倍1080P历史
  • 1台
  • 1
  • 按表格
  • 中档
  • 含税费 | 含运费
  • 2021-09-03
查看价格

结构塑性极限分析应用

用极限分析进行研究的结构主要有梁、刚架、板、壳等几种类型,它们在极限状态时有各自的特点。

梁和刚架是极限分析定理应用得最有成效的结构。计算梁和刚架的极限载荷须用到塑性铰的概念。当梁的某截面上的弯矩达到塑性极限值Μp时,塑性变形只能在Μ=Μp点处发生,该处曲率变化率可以任意增大,这时曲率的变化率不连续,就好象铰一样,这样的铰称为塑性铰。塑性铰和普通铰的区别在于:普通铰不能传递弯矩,而塑性铰能传递塑性极限弯矩;普通铰是双向铰,而塑性铰是单向铰,即当转角方向和弯矩方向一致时,可以发生自由塑性变形。塑性铰一般出现在集中力作用处、支承处或当均布载荷作用时剪力为零处。塑性铰的位置可用实验方法确定。在结构中形成足够数目的塑性铰后,结构就变为机构。

在极限状态下,板中会出现塑性铰线,它是塑性铰的连线,其性质和塑性铰一样,也可以用实验方法确定。圆板受轴对称载荷作用时,在极限状态下,所有径向塑性铰线将连成一片,从而形成塑性区。在壳体结构中有一个或几个区域处于塑性状态后,壳体才会处于极限平衡状态。

对于连续梁、桁架、刚架和受轴对称载荷作用的圆板、环板、柱壳、球壳、锥壳已找到了不少极限分析的完全解。但对于静不定次数比较高的静不定结构,计算相当复杂。对于多边形板、受非轴对称载荷作用的圆板、柱壳、锥壳以及球壳径向接管、圆柱壳径向接管极限分析的完全解,还需要作进一步的研究。

反过来,根据极限分析原理,可以按照载荷的要求寻求最轻结构,这就是极限设计。

整体结构的塑性极限分析计算,应符合下列规定:

1 对可预测结构破坏机制的情况,结构的极限承载能力可根据设定的结构塑性屈服机制,采用塑性力学方法进行分析;

2 对于难于预测结构破坏机制的情况,结构的极限承载能力可采用静力或动力弹塑性分析方法确定;

3 当偶然作用具有动力特征时,直接承受偶然作用的结构构件或部分,应根据偶然作用的动力特征考虑其动力效应影响。

查看详情

结构塑性极限分析简介

结构塑性极限分析,对结构在塑性极限状态下的特性的研究。又称结构破损分析。当外载荷达到某一极限值时,结构即变成几何可变机构,变形无限制增长,从而失去承载能力,这种状态称为结构的塑性极限状态。在塑性极限分析中,由于不考虑弹性变形而使分析过程大为简化,且所得的塑性极限载荷与考虑弹塑性过程所得到的结果完全相同。凡是在极限条件中起作用的内力,称为广义应力。当某点的广义应力满足极限条件时,表示结构上该点已进入屈服状态;当结构上有若干截面达到屈服状态时,结构即变成机构,开始无限制地增加变形,结构达到了极限状态。

查看详情

结构塑性极限分析常见问题

查看详情

结构塑性极限分析研究内容

内容

当作用在结构上的载荷增大至某一极限值时,理想塑性材料结构将变成几何可变机构(见结构的几何不变性),它的变形无限制地增大,从而使结构失去承载能力。这种状态称为结构的塑性极限状态,对应于此状态的载荷称为塑性极限载荷。

目的

结构塑性极限分析的目的是:

①求出极限载荷;

②确定极限状态下满足应力边界条件的应力分布规律;

③找出结构破损时的机构形式。

塑性极限分析是在假设材料具有理想刚塑性性质的前提下进行的,因而避开了弹塑性分析的复杂计算。由极限分析的解所得到的极限载荷,和由弹塑性分析所得到的极限载荷完全相等。

基本假设和概念

基本假设和概念在结构极限分析中,一般采用如下几个假设:①材料是理想刚塑性的(弹性应变比塑性应变小得多且强化性质不明显的材料)。②结构变形足够小。③在达到极限状态前,结构不失去稳定性。④满足比例加载条件(各应力分量按一定比例增长)。

在结构极限分析中,常用到以下两个概念:①静力容许应力场。即满足平衡条件和力的边界条件且不破坏极限条件的应力场。②运动容许位移场。即满足几何约束条件并使外力作正功的位移场。

查看详情

结构塑性极限分析研究简史

早在1914年,G.V.卡金契便对梁结构提出了下限定理的萌芽看法。1934年,苏联的A.A.格沃兹杰夫对确定杆系结构承载能力的问题,给出了上、下限定理。1948年苏联的C.M.法因贝格用逻辑推理方法进一步考证了上、下限定理。1961年美国的W.普拉格等对二维和三维问题作了论述。此后,美国的P.G.霍奇应用简化屈服条件的方法,找到许多板壳极限分析的完全解。 2100433B

查看详情

结构塑性极限分析文献

结构的塑性极限分析 结构的塑性极限分析

结构的塑性极限分析

格式:ppt

大小:2.7MB

页数: 未知

结构的塑性极限分析——梁的弹塑性弯曲   塑性极限分析定理和方法   梁的极限分析   圆板的极限分析   一.基本假定   平截面假设:在变形过程中,变形前为平面的横截面,变形后仍保持为平面,且与变形后梁的轴线垂直

钢筋混凝土井字梁结构塑性极限分析 钢筋混凝土井字梁结构塑性极限分析

钢筋混凝土井字梁结构塑性极限分析

格式:pdf

大小:2.7MB

页数: 4页

对钢筋混凝土井式梁结构进行了塑性极限分析,得出了极限承载力得实用计算通式及相应得系数供设计使用。假设各井式梁内力间比例符合弹性结果比例,并考虑不同的边界条件,结果表明,对井式梁结构进行塑性极限分析,更加接近实际的受力状态,计算过程相对简单,避免了实际工程运用中各梁过量的内力调幅,使得结构设计更加优化。

结构塑性极限结构塑性极限分析

结构塑性极限分析,又称结构破损分析,是对结构在塑性极限状态下的特性的研究,塑性力学的研究内容之一。

当外载荷达到某一极限值时,结构即变成几何可变机构,变形无限制增长,从而失去承载能力,这种状态称为结构的塑性极限状态。在塑性极限分析中,由于不考虑弹性变形而使分析过程大为简化,且所得的塑性极限载荷与考虑弹塑性过程所得到的结果完全相同。凡是在极限条件中起作用的内力,称为广义应力。当某点的广义应力满足极限条件时,表示结构上该点已进入屈服状态;当结构上有若干截面达到屈服状态时,结构即变成机构,开始无限制地增加变形,结构达到了极限状态。

查看详情

结构塑料极限分析研究内容

结构塑性极限分析

①求出结构的塑性极限载荷。②找出极限状态下,结构中的应力分布规律。③求出结构在极限状态下,满足塑性变形规律和结构机动条件的破损机构。

为了解决上述问题,除了要知道材料的有关参数外,还应知道静力和机动条件。这些条件包括:①极限条件。即结构出现屈服时其广义力(极限条件中所包含的弯矩、薄膜力或轴向力)应满足的条件。②破损机构条件,即在极限状态下结构的运动规律,或结构失去承载能力时的运动形式。③平衡条件。④几何条件。其中①、②两个条件应建立在理论分析和实验研究的基础上,是结构极限分析的物理依据;③、④两个条件是结构处于弹性状态或塑性状态都必须满足的条件。如果所求得的解满足以上全部条件而且满足所给的边界条件,则该解即为极限分析的完全解。

查看详情

结构塑性极限基本信息

塑性力学的研究内容之一,研究结构在塑性极限状态下的特性,亦称结构破损分析。当作用在结构上的载荷增大至某一极限值时,理想塑性材料结构将变成几何可变机构(见结构的几何不变性),它的变形无限制地增大,从而使结构失去承载能力。这种状态称为结构的塑性极限状态,对应于此状态的载荷称为塑性极限载荷。结构塑性极限分析的目的是:①求出极限载荷;②确定极限状态下满足应力边界条件的应力分布规律;③找出结构破损时的机构形式。塑性极限分析是在假设材料具有理想刚塑性性质的前提下进行的,因而避开了弹塑性分析的复杂计算。由极限分析的解所得到的极限载荷,和由弹塑性分析所得到的极限载荷完全相等。

研究方法  从事结构塑性极限分析,须先知道结构的外力和几何约束边界条件以及结构的材料常数。此外,还要利用如下的条件:①屈服条件,即在极限状态下各应力分量组合应满足的条件;②破损机构条件,即在极限载荷作用下结构变成几何可变机构的条件;③平衡条件;④几何条件,即应变和位移的关系所给出的条件。在这些条件中,①和②是建立在实验基础上的,而③和④则是结构所必须满足的条件。凡是满足以上全部条件的解称为完全解。由于完全解不容易得到,在极限分析理论中发展了两个定理,即下限定理和上限定理。

下限定理可表述为:与静力容许场对应的外载荷不大于真实的极限载荷。所谓静力容许场是指满足平衡方程和外力边界条件并且不违背屈服条件的应力场。下限定理提出了结构不破坏的必要条件,用它可计算结构承载能力的下限,这样的下限有无穷多个。由于结构不破坏时所能承受的最大载荷与结构的真实极限载荷最接近,所以应选取由下限定理求出的极限载荷下限中最大的一个作为极限载荷的近似值。按平衡条件、屈服条件用下限定理求极限载荷最大下限的方法称为极限分析的静力法。

上限定理可表述为:与机动容许场对应的外载荷不小于真实的极限载荷。所谓机动容许场是指满足几何约束条件并能形成破损机构的位移速度场。外力在此速度场上作功的功率大于等于结构内部的耗散功率。上限定理提出了结构破坏的充分条件,用它可求得极限载荷的上限,这样的上限也有无穷多个。在用上限定理求极限载荷时,由于假设结构已经破坏,所以应选取所求得的极限载荷上限中最小的一个作为极限载荷的近似值,它和真实的极限载荷最接近。只考虑机动方面的要求,而不考虑屈服条件和平衡条件的要求,按上限定理求极限载荷最小上限值的方法称为极限分析的机动法。对于复杂的结构或复杂的载荷分布,常须用实验方法得出一个破坏机构的形态,据此求出极限载荷的一个较好的上限值。如果一个载荷既是极限载荷上限,又是极限载荷的下限,它便是完全解的极限载荷。

除用静力法和机动法以外,结构极限载荷的上限和下限还可以通过简化屈服条件求得。此法的理论依据是:在结构的任何部分提高材料的屈服极限,都不会降低结构的承载能力;而在结构的任何部分降低材料的屈服极限,都不会提高结构的承载能力。在广义应力空间中,屈服条件的数学表达式往往是非线性的,联合求解这种非线性的方程和复杂结构的平衡微分方程在数学上往往有困难,因此,用线性的屈服条件代替非线性的屈服条件并找出复杂结构的近似解,是求解极限载荷上、下限的有效方法。例如,在图中所示的广义应力Q1、Q2的二维平面中,曲线A代表实际的屈服条件,多边形B和多边形C 分别代表线性化了的内接和外切的近似屈服条件。按多边形B计算得到的极限载荷是实际极限载荷的下限,而按多边形C计算得到的极限载荷是实际极限载荷的上限。

梁和刚架是极限分析定理应用得最有成效的结构。计算梁和刚架的极限载荷须用到塑性铰的概念。当梁的某截面上的弯矩达到塑性极限值Μp时,塑性变形只能在Μ=Μp点处发生,该处曲率变化率可以任意增大,这时曲率的变化率不连续,就好象铰一样,这样的铰称为塑性铰。塑性铰和普通铰的区别在于:普通铰不能传递弯矩,而塑性铰能传递塑性极限弯矩;普通铰是双向铰,而塑性铰是单向铰,即当转角方向和弯矩方向一致时,可以发生自由塑性变形。塑性铰一般出现在集中力作用处、支承处或当均布载荷作用时剪力为零处。塑性铰的位置可用实验方法确定。在结构中形成足够数目的塑性铰后,结构就变为机构。

在极限状态下,板中会出现塑性铰线,它是塑性铰的连线,其性质和塑性铰一样,也可以用实验方法确定。圆板受轴对称载荷作用时,在极限状态下,所有径向塑性铰线将连成一片,从而形成塑性区。在壳体结构中有一个或几个区域处于塑性状态后,壳体才会处于极限平衡状态。

对于连续梁、桁架、刚架和受轴对称载荷作用的圆板、环板、柱壳、球壳、锥壳已找到了不少极限分析的完全解。但对于静不定次数比较高的静不定结构,计算相当复杂。对于多边形板、受非轴对称载荷作用的圆板、柱壳、锥壳以及球壳径向接管、圆柱壳径向接管极限分析的完全解,还需要作进一步的研究。

反过来,根据极限分析原理,可以按照载荷的要求寻求最轻结构,这就是极限设计。

研究简史  早在1914年,G.V.卡金契便对梁结构提出了下限定理的萌芽看法。1934年,苏联的A.A.格沃兹杰夫对确定杆系结构承载能力的问题,给出了上、下限定理。1948年苏联的C.M.法因贝格用逻辑推理方法进一步考证了上、下限定理。1961年美国的W.普拉格等对二维和三维问题作了论述。此后,美国的P.G.霍奇应用简化屈服条件的方法,找到许多板壳极限分析的完全解。

查看详情

相关推荐

立即注册
免费服务热线: 400-888-9639