选择特殊符号

选择搜索类型

热门搜索

首页 > 百科 > 建设工程百科

静磁屏蔽

静磁场是稳恒电流或永久磁体产生的磁场。静磁屏蔽是利用高磁导率μ的铁磁材料做成屏蔽罩以屏蔽外磁场。它与静电屏蔽作用类似而又有不同。 \n\n静磁屏蔽的原理可以用磁路的概念来说明。如将铁磁材料做成截面如图1的回路,则在外磁场中,绝大部份磁场集中在铁磁回路中。这可以把铁磁材料与空腔中的空气作为并联磁路来分析。因为铁磁材料的磁导率比空气的磁导率要大几千倍,所以空腔的磁阻比铁磁材料的磁阻大得多,外磁场的磁感应线的绝大部份将沿着铁磁材料壁内通过,而进入空腔的磁通量极少。这样,被铁磁材料屏蔽的空腔就基本上没有外磁场,从而达到静磁屏蔽的目的。材料的磁导率愈高,筒壁愈厚,屏蔽效果就愈显著。因常用磁导率高的铁磁材料如软铁、硅钢、坡莫合金做屏蔽层,故静磁屏蔽又叫铁磁屏蔽。

静磁屏蔽基本信息

静磁屏蔽简介

抑制或排除静磁干扰(包括恒定磁场干扰)的措施。如使用高磁导率铁磁材料制成的空腔壳把需要屏蔽的区域包围或隔开。这样的壳称为磁屏。它可以是全封闭的或近于封闭的。根据磁场分界面条件,外界干扰磁场的磁力线在磁屏的外表面处发生畸变,使磁屏的内表面处及腔内的磁力线密度大为减少,磁场强度显著减弱,达到抑制磁干扰的目的。

屏蔽的效果可用屏蔽系数K 表示。它可以定义为腔内磁场强度H1与外部所加均匀磁场强度H0的比值,即 K=H1/H0

K值愈小,表示屏蔽效果愈大。对于二维磁场,应用解析计算法,可以获得长圆铁管的屏蔽系数

式中 r1和 r2分别为圆管的内径和外径(图1);

μr为铁管的相对磁导率。上式成立的条件是μr>>1。显然, μr越大、磁屏的厚度越大,则K值越小,即屏蔽效果越大。为了获得更好的屏蔽效果,电工中常采用多层磁屏的方法。2100433B

查看详情

静磁屏蔽造价信息

  • 市场价
  • 信息价
  • 询价

屏蔽端子

  • SK 14
  • 菲尼克斯
  • 13%
  • 长沙市泽菲电气有限公司
  • 2022-12-08
查看价格

屏蔽端子

  • SKS 14-SNS35
  • 菲尼克斯
  • 13%
  • 长沙市泽菲电气有限公司
  • 2022-12-08
查看价格

屏蔽端子

  • SK20
  • 菲尼克斯
  • 13%
  • 长沙市泽菲电气有限公司
  • 2022-12-08
查看价格

屏蔽端子

  • SKS 14-NS35
  • 菲尼克斯
  • 13%
  • 长沙市泽菲电气有限公司
  • 2022-12-08
查看价格

屏蔽端子

  • SK35
  • 菲尼克斯
  • 13%
  • 长沙市泽菲电气有限公司
  • 2022-12-08
查看价格

  • DN15
  • 深圳市2005年2月信息价
  • 建筑工程
查看价格

  • ZSPC-20
  • 湛江市2005年2月信息价
  • 建筑工程
查看价格

  • ZSPC-32
  • 湛江市2005年2月信息价
  • 建筑工程
查看价格

  • ZSPC-15
  • 湛江市2005年1月信息价
  • 建筑工程
查看价格

  • ZSPC-40
  • 湛江市2005年1月信息价
  • 建筑工程
查看价格

钢质屏蔽

  • 钢质屏蔽
  • 1m²
  • 1
  • 中档
  • 不含税费 | 不含运费
  • 2022-10-31
查看价格

屏蔽

  • 屏蔽
  • 1m²
  • 1
  • 中高档
  • 含税费 | 含运费
  • 2021-05-21
查看价格

屏蔽

  • 屏蔽框(铜板),屏蔽门扇
  • 1m²
  • 1
  • 中高档
  • 含税费 | 含运费
  • 2021-05-21
查看价格

屏蔽观察窗

  • PBC1513 屏蔽观察窗,双层紫铜网一体化,透光率达80%无干扰纹
  • 1m²
  • 1
  • 中高档
  • 不含税费 | 含运费
  • 2020-08-14
查看价格

屏蔽

  • 屏蔽框(铜板),屏蔽门扇,含8mmpb单面铅板处理
  • 1m²
  • 1
  • 中高档
  • 含税费 | 含运费
  • 2021-05-21
查看价格

静磁屏蔽常见问题

查看详情

静磁屏蔽文献

电磁屏蔽玻璃屏蔽效能与表面电阻的研究 电磁屏蔽玻璃屏蔽效能与表面电阻的研究

电磁屏蔽玻璃屏蔽效能与表面电阻的研究

格式:pdf

大小:137KB

页数: 未知

1前言 随着科学技术的发展和计算机的普及以及全球信息化的到来,信息泄露越来越为人们所关注,电磁屏蔽玻璃正是应这一要求而产生的。通常人们通过在玻璃表面镀制一定表面电阻值的膜层来实现玻璃的电磁屏蔽效能,表面电阻的大小与电磁屏蔽效能密切相关。本文分别通过理论计算的方法及制作样品检测的方法来阐明这两者之间的关系,

电子设备电磁屏蔽 电子设备电磁屏蔽

电子设备电磁屏蔽

格式:pdf

大小:137KB

页数: 3页

电子设备的电磁屏蔽 [摘 要 ] 消除电子设备电磁干扰最好的防护措施就是对电子 设备进行电磁屏蔽,本文论述了电子设备的几种常见电磁屏蔽原理 并提出了电子通信设备具体的电磁屏蔽措施。 [关键词 ] 电子通信设备 电磁干扰防护 屏蔽技术 电子通信设备在加电工作的时候,在其外部和内部存在着各种 电磁干扰信号,干扰信号会影响电子设备的正常工作。这些外部干 扰信号是指除电子通信设备所要接收的信号以外的外部电磁波信 号。有自然产生的信号,如宇宙干扰、大气放电等干扰信号,也有 人为所产生的干扰信号。内部干扰是由于电子通信设备在加电时存 在着内部寄生耦合。寄生耦合有电容耦合、电感耦合,这不是人为 设计的。为了保证电子设备正常地工作,就需要防止来自产品外部 和内部的各种电磁干扰信号,而对于这些干扰信号最好的防护措施 就是电磁屏蔽。 一、电子设备电磁屏蔽的原理 在电子设备进行电磁兼容性设计过程中,屏蔽是最常用

磁屏蔽应用

静磁

静磁场是稳恒电流或永久磁体产生的磁场。静磁屏蔽是利用高磁导率μ的铁磁材料做成屏蔽罩以屏蔽外磁场。它与静电屏蔽作用类似而又有不同。

静磁屏蔽的原理可以用磁路的概念来说明。如将铁磁材料做成截面如上图的回路,则在外磁场中,绝大部份磁场集中在铁磁回路中。这可以把铁磁材料与空腔中的空气作为并联磁路来分析。因为铁磁材料的磁导率比空气的磁导率要大几千倍,所以空腔的磁阻比铁磁材料的磁阻大得多,外磁场的磁感应线的绝大部份将沿着铁磁材料壁内通过,而进入空腔的磁通量极少。这样,被铁磁材料屏蔽的空腔就基本上没有外磁场,从而达到静磁屏蔽的目的。材料的磁导率愈高,筒壁愈厚,屏蔽效果就愈显著。因常用磁导率高的铁磁材料如软铁、硅钢、坡莫合金做屏蔽层,故静磁屏蔽又叫铁磁屏蔽。

静磁屏蔽在电子器件中有着广泛的应用。例如变压器或其他线圈产生的漏磁通会对电子的运动产生作用,影响示波管或显像管中电子束的聚焦。为了提高仪器或产品的质量,必须将产生漏磁通的部件实行静磁屏蔽。在手表中,在机芯外罩以软铁薄壳就可以起防磁作用。

前面指出,静电屏蔽的效果是非常好的。这是因为金属导体的电导率要比空气的电导率大十几个数量级,而铁磁物质与空气的磁导率的差别只有几个数量级,通常约大几千倍。所以静磁屏蔽总有些漏磁。为了达到更好的屏蔽效果,可采用多层屏蔽,把漏进空腔里的残余磁通量一次次地屏蔽掉。所以效果良好的磁屏蔽一般都比较笨重。但是,如果要制造绝对的"静磁真空",则可以利用超导体的迈斯纳效应。即将一块超导体放在外磁场中,其体内的磁感应强度B永远为零。超导体是完全抗磁体,具有最理想的静磁屏蔽效果,但到2013年还不能普遍应用。

电磁

电磁屏蔽是抑制干扰,增强设备的可靠性及提高产品质量的有效手段。合理地使用电磁屏蔽,可以抑制外来高频电磁波的干扰,也可以避免作为干扰源去影响其他设备。如在收音机中,用空芯铝壳罩在线圈外面,使它不受外界时变场的干扰从而避免杂音。音频馈线用屏蔽线也是这个道理。示波管用铁皮包着,也是为了使杂散电磁场不影响电子射线的扫描。在金属屏蔽壳内部的元件或设备所产生的高频电磁波也透不出金属壳而不致影响外部设备。

用什么材料作电磁屏蔽呢?因电磁波在良导体中衰减很快,把由导体表面衰减到表面值的1/e(约36.8%)处的厚度称为趋肤厚度(又称透入深度),用d表示,有

d=5030*sqr(σ/(μ*f))

其中μ和σ分别为屏蔽材料的磁导率和电导率。若电视频率f=100 MHz,对铜导体(σ=5.8×107/ ·m,μ≈μo=4π×10-7H/m)可求出d=0.00667mm。可见良导体的电磁屏蔽效果显著。如果是铁(σ=107/ ·m)则d=0.016mm。如果是铝(σ=3.54×107/ ·m)则d=0.0085mm。

为了得到有效的屏蔽作用,屏蔽层的厚度必须接近于屏蔽物质内部的电磁波波长(λ=2πd)。如在收音机中,若f=500kHz,则在铜中d=0.094mm(λ=0.59mm)。在铝中d=0.12mm(λ=0.75mm )。所以在收音机中用较薄的铜或铝材料已能得到良好的屏蔽效果。因为电视频率更高,透入深度更小些,所需屏蔽层厚度可更薄些,如果考虑机械强度,要有必要的厚度。在高频时,由于铁磁材料的磁滞损耗和涡流损失较大,从而造成谐振电路品质因素Q值的下降,故一般不采用高磁导率的磁屏蔽,而采用高电导率的材料做电磁屏蔽。在电磁材料中,因趋肤电流是涡电流,故电磁屏蔽又叫涡流屏蔽。

手表

机械手表里的机芯都是钢制的。如果手表放在磁铁附近,钢制机芯就会磁化。特别是当游丝磁化后,

表马上就会停止不走。因此,手表需要外罩一种能防御磁力,使磁场透不过的物质。 有意思的是,能够遮住外磁场的物质,原来就是容易磁化的铁本身。为了证明这一点,你可把一个小指南针放在一个铁环里,可以看到小磁针就不会被环外的磁铁吸引了。所以,如果你有一块用铁或钢做外壳的手表,就可以保护表内的钢制机件不受磁力影响。即使将表放在强磁场附近,它的精确度一点也不会降低。至于用金或银做外壳的金表和银表,虽然很贵重,但是千万不能放到磁铁附近,因为它不能防磁。 可见,用铁制包皮就能把外面的磁场遮住,使内部不受外磁场的影响,放在其中的铁制品也就不会被磁化。这种现象在物理学中称为磁屏蔽。

查看详情

磁屏蔽描述

例如右图,是磁屏蔽示意图。图中A为一磁导率很大的软磁材料(如坡莫合金或铁铝合金)做成的罩,放在外磁场中。由于罩壳磁导率μ比空气导磁率μ大得多,所以绝大部分磁场线从罩壳的壁内通过,而罩壳内的空腔中,磁感线是很少的。这就达到了磁屏蔽的目的。为了防止外界磁场的干扰,常在示波管、显像管中电子束聚焦部分的外部加上磁屏蔽罩,就可以起到磁屏蔽的作用。

电子设备中,有些部件需要防止外界磁场的干扰。为解决这种问题,就要用铁磁性材料制成一个罩子,把需防干扰的部件罩在里面,使它和外界磁场隔离,也可以把那些辐射干扰磁场的部件罩起来,使它不能干扰别的部件。这种方法称为磁屏蔽,如右图所示。由于用铁制的屏蔽外壳磁阻很小,它就为外界干扰磁场提供了通畅的磁路,使磁力线都通过铁壳短路而不再影响被屏蔽在里面的部件。

这种现象也可以用下例说明,如图所示,把一块软铁放入磁场中,这块软铁由于被磁化而产生了磁场,其方向如右下图所示,在这块软铁的内部,外磁场和被磁化的软铁所产生新磁场方向一致,而在铁块外部,两个磁场方向相反,相互抵消,结果就使磁力线的分布变成如图(b)的样子。屏蔽铁壳就是利用这种现象,把磁力线都吸引到铁壳中来,保护了罩内设备不受外界磁场的干扰,或者是防止了罩内的辐射磁场的部件去干扰罩外部件。

在实践中,要达到完全的屏蔽是极不容易的。总有一些磁场要漏进屏蔽罩内或者跑出屏蔽罩外。要达到好的屏蔽效果,必须选用导磁系数高的材料,如坡莫合金,硅钢片等,而且不要太薄,屏蔽罩的结构设计,接缝要尽量少,在制作时接缝处要紧密,尽量减少气隙。总之屏蔽罩的磁阻越小屏蔽效果越好。如果在低频交变磁场中,需要进行屏蔽时,例如电源变压器需要屏蔽时,都是按以上磁屏蔽的原则处理的。屏蔽要求较高时,还可以采用多层屏蔽。

但在高频交变磁场中,屏蔽原理就完全是另一种概念。这时是利用涡流现象,以导电材料制成屏蔽罩。在高频干扰磁场中,屏蔽罩中会产生涡流。由于涡流产生的磁场有抵消外磁场的作用,当外磁场的交变频率越高,产生的涡流现象越严重,从而抵消外界磁场的作用越大。所以在进行高频屏蔽时,不必用很厚的铁磁性材料去作屏蔽罩,而是用导电性好的铜片或铝片来作屏蔽罩,对要求高的屏蔽罩,常是在铜壳上再镀一层银,提高屏蔽罩导电性能,则屏蔽效果就更好。

查看详情

静多态静多态动多态

优缺点比较

静多态是以牺牲灵活性而获得运行速度的一种做法;而动多态则恰恰相反,它是以牺牲运行速度而获取灵活性的做法。当然这么说是不全面的,看看下面这个特殊的应用:

使用静多态来实现动多态

这是一种在模板元编程(Template Metaprogramming)中常见的标准编程技巧。在C 中,可以借助模板来实现面向对象语言所支持动多态相似的功能特性(C 中指的就是的virtual 函数)。

下面是C 本身所支持多态形式:(virtual版)

#include

class Base {

public:

virtual void method() = 0;

virtual ~Base() { }

};

class Derived : public Base {

public:

virtual void method()

{

std::cout << "Derived" << std::endl;

}

};

class Derived2 : public Base {

public:

virtual void method()

{

std::cout << "Derived2" << std::endl;

}

};

int main()

{ Base *pBase = new Derived;

pBase->method(); // 输出:"Derived"

delete pBase;

Base *pBase2 = new Derived2;

pBase2->method(); // 输出:"Derived2"

delete pBase2;

return 0;

}

注:C 本身是借助virtual关键字来实现多态的(dynamic polymorphism),而通常编译器是借助virtual look-up tables(虚函数表)来决定该调用那个版本的函数,当然这一过程发生在运行期。

下面是使用CRTP(Curiously Recurring Template Pattern)来实现多与上面对应功能的静多态代码:

#include

template

class Base {

public:

void method()

{

// ...

static_cast(this)->implementation();

// ...

}

};

class Derived : private Base {

public:

void implementation()

{

std::cout << "Derived" << std::endl;

}

};

class Derived2 : private Base {

public:

void implementation()

{

std::cout << "Derived2" << std::endl;

}

};

int main()

{

Base *pBase = new Base();

pBase->method(); // 输出:"Derived"

delete pBase;

Base *pBase2 = new Base();

pBase2->method(); // 输出:"Derived2"

delete pBase2;

return 0;

}

虽然使用这种方式实现的多态和面向对象中的多态从功能上说差不多相同,但是前者没有后者易用、易懂、和能力强大。虽然如此,CRTP作为一种模板设计模式还是很有用的,例如,Boost iterator library就是用了这种方法来实现。

其实在别的语言中也存在CRTP这种模式,如Java,Enum类被定义为Enum>,当然由于Java在模板方面的不足,作为Java语言的使用者,你是没法自己体验这样的用法(Java虽然支持模板特性,但是用户不能自己定义模板,只能使用库里边的模板类)。2100433B

查看详情

相关推荐

立即注册
免费服务热线: 400-888-9639