选择特殊符号
选择搜索类型
请输入搜索
碱金属热电转换器 (碱金属热电转换高效率垃圾发电器)
AMTEC的工作过程可以参照图1来说明。AMTEC是一个充有少量钠的密闭容器,由厚度约1毫米的 "- Al2O3固体电解质和电磁泵将其分隔成压力不同的两部分。在高压侧,工 质钠被热源加热,在钠与固体电解质的交界面,由压力差决定的化学势梯度驱使钠离子透过 "- Al2O3向低压侧的电解质- 多孔电极界面迁移,负载开路时,在b "- Al2O3两侧便形成电动势,这一过程和浓度差电池类似,因而,AMTEC的空载电压由能斯特方程决定。负载接通时,电子从高压侧经外电路到达多孔电极处,与离子复合成钠原子,然后 图1。AMTEC的工作原理
钠以蒸气相穿过低压空间到达冷凝器,凝结的液钠则由电磁泵送回高压侧。实质上,"- Al2O3在能量转换过程中起着选择性渗透膜的作用,而AMTEC是工质钠通过固体电解质等温膨胀做功的热机。
在热源温度1150K、冷源温度500K、"- Al2O3壁厚为1毫米、考虑器件的内部损失时,AMTEC的效率随电流的密度而变化。当不可逆过程造成的损失为0.2瓦¤ [ 厘米] 2时,效率峰值为35%,对同样温度范围的卡诺循环效率的比值达62%。所谓不可逆过程,主要是多孔电极表面向冷凝器表面的热辐射以及通过构件的热传导。与同样是直接发电器件的热
电半导体发电器不同的是,对于后者,热传导是一种本征损失,而对AMTEC,可以靠精心设计把这类不可逆损失降低到最低限度,这是AMTEC具有高效率的重要原因。分析结果表明,如果把损失抑制到0.02瓦¤ [ 厘米] 2 ,那么理论效率将达45%。
迄今用于AMTEC的"- Al2O3都是管材,外径从7毫米至30毫米不等,壁厚最薄的做到0.7 毫米(考虑不可逆损失时的效率)。AMTEC是低电压器件,单管器件的空载电压约为1.5伏,按电极表面积计算的功率密度达0.5~ 1.0瓦¤ [ 厘米] 2。在实际使用时,靠多管单元的适当组合来满足负载的要求。每个单元由多根"- Al2O3管构成,在电气上串联连接。
碱金属热电转换器是1968年见于美国专利的新概念,美国福特汽车公司和美国宇航局喷气推进实验室是研究、开发AMTEC的先驱,先后取得了一系列重要进展:以单管实验器件效率19%验证了理论的可靠性;36管实验装置发电1千瓦;用电磁泵加压的实验装置连续发电14000小时;用毛细吸液芯加压的模块式器件连续稳定发电11000小时。
九十年代起,美国先进模块电源系统(AMPS) 公司则以令人瞩目的研究成果大大推动了AMTEC商用化的进程。用5至7根直径7毫米"- Al2O3管构成的器件已经在AMPS公司进行试生产,器件单元输出4瓦左右,其应用领域为空间电源、余热发电和热电联产等等。
AMPS公司制作的单管器件进行模拟试验:在多管单元运行特性研究和可靠性试验的基础上,AMPS设计了净输出500瓦的AMTEC装置作为住户微型热电联产系统的原型;与此同时,他们正在为欧洲的公司制造容量为350瓦、利用供暖锅炉余热的发电装置原型,并进行了35千瓦系统的设计研究,初步结果表明,35千瓦系统的尺寸仅为0.7立方米。
中国科学院电工研究所从1994年起,先后在国家自然科学基金和国防科工委科技预研基金的支持下,并与中国科学院上海硅酸盐研究所的密切配合,在国内率先开展碱金属热电能量直接转换技术的应用研究,建立了热电转换器件实验室和薄膜电极制备、器件封接用的工艺装备,开展了多孔薄膜电极制备、单体封接、集流栅设计和工质循环技术等关键技术的研究和实用化多管器件的设计及工艺研究,取得了显著进展。单管实验器件达到了能够重复运行多次、累计发电2小时、峰值功率8.85瓦、功率密度0.9瓦¤ [ 厘米] 2的水平。为进一步进行碱金属热电转换垃圾发电的研究创造了良好的条件。
关于开展碱金属热电转换高效率垃圾发电技术研究的建议
实际上,在试图以提高燃烧温度来提高垃圾发电效率的场合,都可以考虑用碱金属热电转换器取代传统的动力设备,而达到所期望的性能指标。从发展着眼,将碱金属热电 转换技术与垃圾的气化熔融技术相结合,是构成高效率垃圾发电系统极有前景的方案。
碱金属热电转换器的受热面可以直接与高温烟气流接触,发电装置设在熔融炉排烟部分的炉壁上,直接把燃烧热转换成电能。这样,就省去了余热锅炉、汽轮发电机组以及 蒸汽循环所需的附属设备。参照AMPS的估计,0.75兆瓦的AMTEC发电装置,体积约为15立方米。另一方面,0.75兆瓦汽轮发电机组的尺寸为24立方米,而与之匹配的余热锅炉(出口蒸汽参数设为300° C、13大气压)的尺寸则超过300立方米。
因此,所建议的高效率垃圾发电系统在构成上的优点显而易见。在碱金属热电转换高效率垃圾发电系统中,垃圾的热解在流化床型气化炉中完成;AMTEC考虑用空气冷却,发电装置的排热可以用来预热气化炉的燃风或熔融炉的补燃风。当然,还可以有各种具体方案,包括余热利用,都需要进行详细的比较研究。建议国家科技部组织有关单位进 行方案论证,确定项目和选题。
建议中国在"十五"期间开展碱金属热电转换垃圾发电系统关键技术的研究开发,并建成日处理量10吨级的试验装置,进行电厂效率的验证,为在2010年建成中试系统积累必要的数据,进行技术准备。主要研究内容如下。
⑴垃圾气化熔融机制和过程参数选择。
⑵气化炉和熔融炉装置的优化设计。
⑶余热利用、金属类物质的回收环节的设计。
⑷AMTEC发电装置的设计和可靠性试验。
⑸AMTEC发电装置的功率调节。
⑹AMTEC-垃圾发电系统技术经济评价。
中国"九五"期间,垃圾焚化、发电研究已经有了良好的开端,碱金属热电转换器的研究已经有了较好的基础,相信经过"十五"的努力,中国将在高效率垃圾发电技术的发展上走出自己的路。
如图:假如现在上端(紫色)受力向左,则下端(绿色)受力向右,A`和B`跟线圈一起转动,对换过来之后,A`在下而B`在上,电流方向换向从B`流进从A`流出,所以原来受力向右的绿色现在受力向左,原来受力向...
AD,DA中的A指模拟信号,D指数字信号,ADC指模拟信号到数字信号转换器,把电压值电流值转换成二进制码,DAC指数字信号到模拟信号转换器,把二进制码转换成电压电流
1、气压控制换向阀 气压控制换向阀,是利用气体压力来使主阀芯运动而使气体改变流向的。按控制方式不同分为加压控制、卸压控制和差压控制三种。加压控制是指所加的控制信号压力是逐渐上升的.当气压增加到...
第12章碱金属、碱土金属
第12章碱金属、碱土金属
阀门定位器、电气转换器概述及工作原理
阀门定位器、电气转换器概述及工作原理 阀门定位器是调节阀的主要附件,它将阀杆位移信号作为输入的反馈测量信号,以控制器输出信号 作为设定信号,进行比较,当两者有偏差时,改变其到执行机构的输出信号,使执行机构动作,建立了阀 杆位移信号与控制器输出信号的一一对应关系。因此,阀门定位器组成一阀杆位移为测量信号,以控制器 输出为设定信号的反馈控制系统。 阀门定位器按输入信号分为气动阀门定位器和电气阀门定位器。气动阀门定位器的输入信号是标准 气信号,如 20~100kpa 气信号,而电气定位器的输入信号是标准电流或电压信号,如 4~20mA 或 1~5 V,在定位器内部将电信号转换为电磁力,然后输出气信号到气动调节阀。 气动阀门定位器可与气动薄膜调节阀、气动活塞调节阀配套使用,它接受气动调节仪表给出的 20~1 00kPa 信号来控制调节阀的行程,又经过反馈系统的作用,确保阀芯位置按调节仪表来的气动信
碱金属热电转换是利用”- Al2O3固体电解质的离子导电性、用钠作工质,以热再生浓度差电池过程为工作原理的热电能量直接转换新技术。碱金属热电转换器(Alkali Metal Thermal to Electric Converter,AMTEC)则是一种面积型发电器件,它无运动部件、无噪声、无需维护,可以和温度在600° C至900° C范围任何形式的热源相 结合,构成模块组合式发电装置,满足不同容量负载的要求,热电转换效率可超过30%,而且具有排热温度较高(300°C上下)的特点。与垃圾气化熔融技术相结合,构成高效率垃圾发电系统,是碱金属热电转换技术的重要应用方向,碱金属热电转换高效率垃圾发电将在我国方兴未艾的垃圾发电技术发展占有重要的地位。碱金属热电转换器是1968年见于美国专利的新概念,美国福特汽车公司和美国宇航局喷气推进实验室是研究、开发AMTEC的先驱,先后取得了一系列重要进展:以单管实验器件效率19%验证了理论的可靠性;36管实验装置发电1千瓦;用电磁泵加压的实验装置连续发电14000小时;用毛细吸液芯加压的模块式器件连续稳定发电11000小时。
九十年代起,美国先进模块电源系统( AMPS) 公司则以令人瞩目的研究成果大大推动了AMTEC商用化的进程。用5至7根直径7毫米”- Al2O3管构成的器件已经在AMPS公司进行 试生产,器件单元输出4瓦左右,其应用领域为空间电源、余热发电和热电联产等等。
热电转换器也是一种热机,它从高温热源吸热,向低温热源放热,并将部分热转换成为电功。因此它的理论最高效率仍然是卡诺循环效率。由于各种损失的存在,热电转换器的效率与卡诺循环限制相去甚远。理论分析表明热电转换器的效率能够大于10%,但实际建成装置的效率大都远低于这个值,随着半导体材料的发展,热电转换器的效率接近20%是个合理的目标。至于应用,可在非洲偏远地区用油灯的余热为收音机供电,可在海洋上用海水温差驱动声纳浮标。
所有已发现的碱金属均存在于自然界中。按照化学元素丰度顺序,丰度最高的是钠,其次是钾,接下来是锂、铷、铯,最后是钫。
下表为碱金属元素在地壳中(不含海洋、大气)的质量克拉克值,取自《无机化学(第五版)》,2008 .371
元素 |
锂 |
钠 |
钾 |
铷 |
铯 |
w(%) |
0.006% |
2.64% |
2.60% |
0.03% |
0.0006% |
由表可见,碱金属中,钾、钠的丰度较大,为常量元素,锂、铷、铯丰度很小,为微量元素。而海水中,钠的质量克拉克为1.062%,钾的质量克拉克为0.038%,钾、钠同样是海水中的常量元素。
碱金属在自然界的矿物是多种多样的,常见的如下
锂:锂辉石、锂云母、透锂长石
钠:食盐(氯化钠)、天然碱(碳酸钠)、芒硝(十水硫酸钠)、智利硝石(硝酸钠)
钾:硝石(硝酸钾)、钾石盐(氯化钾)、光卤石、钾镁矾、明矾石(十二水硫酸铝钾)
铷:红云母、铷铯矿
铯:铷铯矿、铯榴石
碱金属在人体中以离子形式存在于体液中,也参与蛋白质的形成。
碱金属在人体中的质量分数(%)数据来源:《无机化学(第五版)》,2008.371
元素 |
锂 |
钠 |
钾 |
铷 |
铯 |
鲜重 |
极微量 |
0.15% |
0.35% |
极微量 |
— |
注:数据可能存在较大差异,以下数据可供核对:氧65%、碳18%、氢10%
人体中元素与地壳元素丰度呈正相关,这是生物链的传递结果。动物胚胎中钾与钠的质量分数相近,有学者认为这是动物源于海生有机体的证据之一。
大多数碱金属有多种用途。铷或铯的原子钟是纯碱金属最著名的应用之一,其中以铯原子钟最为精准。钠化合物较为常见的一种用途是制作钠灯,一种高效光源。钠和钾是生物体中的电解质,具有重要的生物学功能,属于膳食矿物质。
锂离子:锂在人脑有特殊作用,研究表明,锂离子可以引起肾上腺素及神经末梢的胺量降低,能明显影响神经递质的量,因为锂离子具体的作用机理尚不清楚,故锂中毒也没有特效解药,但碳酸锂目前被广泛用于狂躁型抑郁症的治疗(口服:600mg~800mg╱天)。
钠离子:人体液的渗透压平衡主要通过钠离子和氯离子进行调节,钠离子的另一个重要作用是调节神经元轴突膜内外的电荷,钠离子与钾离子的浓度差变化是神经冲动传递的物质基础,世界卫生组织建议每人每日摄入(1~2)克钠盐,中国营养学会建议不要超过5克。
钾离子:钾也参与调节渗透压与轴突膜内外的电荷,人体中心脏、肝脏、脾脏等器官中钾比较富集。
铷元素:铷元素的生理作用还在研究中,有多种迹象表明铷与生命过程有关,疑似为微量元素。