选择特殊符号
选择搜索类型
请输入搜索
绝热膨胀过程中,气体的体积V增大,压强p降低,等熵过程的温度随压强的变化而变化。过程可用等熵效应系数来衡量。又由于系统不和外界交换热量,即dQ=0,故由热力学第一定律,气体的温度必然降低。
从能量转化的角度看,气体在绝热膨胀过程中减少其内能而对外做功,膨胀后气体分子间的平均距离增大,吸力的影响减弱而使分子间的互作用能量有所增加。内能既减少,相互作用能量又增加,分子的平均动能必减少,因而气体的温度下降,起到冷冻的效果。
绝热膨胀法是德国科学家林德等人在征服“永久气体”的过程中研究发现的。压缩—绝热膨胀法的过程是先向容器里装入气体,施加高压,通过外界做功,使气体体积变小,气体分子运动加快(增加分子的平均动能),温度升高,接着通过冷却剂的蒸发吸热,带走热量,把受压气体冷却到原来的温度。然后断绝容器(系统)与外界的热交换,让受压的气体通过狭窄的口子急剧膨胀,对外做功,由于从外界吸收的热量为零,因此只能减少自身的内能,从而达到降温的目的。
物体的基本原理是“热胀冷缩”-----双金属片受热膨胀取极片接触导通负载工作,或者冷却后双金属片收缩断开与电路脱离,负载停止工作,如此反复......家中饮水机的温控器就是使用的双金属片(也有用热敏电...
14.2*0.000001/摄氏度
Q345热膨胀系数Q345热膨胀系数:(10.6-12.2)×10的-6次方/K(当20-100℃时)。Q235热膨胀系数Q235热膨胀系数:(10.6-12.2)×10的-6次方/K(当20-100...
推杆式热膨胀仪测量三种岩石高温热膨胀系数
1研究背景热膨胀系数定义为:α=1/V0(V/T)P,表示当温度改变时,材料体积的相对变化量。岩石的热膨胀系数是表征其非简谐性质的重要物理量之一,基于热膨胀系数的格林乃森定律可以使物质的弹性和热学参数发生联系,因此获得高温下岩石的热膨胀系数具有重要的地学意义。实验获得材料的热膨胀系数包括X射线衍射法、膨胀测定法和干涉法三种方法。有关造岩矿物的热膨胀系数前人已经进行了详细的研究。
用负热膨胀的BiNiO3制造零热膨胀复合物
要求精确定位的半导体工业和光学通讯经常遇到热膨胀难题。最近发现钙钛矿型Bi1-xLaxNi03和Bi-Ni1-xFexO3呈现巨大负热膨胀(常温附近)。
绝热膨胀通常由气体压强的变化引起。
绝热膨胀发生在气压下降时,这时气体温度也会下降。例如,给轮胎放气时,可以明显感觉到放出的气体比较凉,这正是因为气体压强下降的足够快到可视为绝热过程的缘故,气体内能转化为机械能,温度下降。
这些温度的变化量可以用理想气体状态方程精确计算。
绝热膨胀通常由气体压强的变化引起。
绝热膨胀发生在气压下降时,这时气体温度也会下降。例如,给轮胎放气时,可以明显感觉到放出的气体比较凉,这正是因为气体压强下降的足够快到可视为绝热过程的缘故,气体内能转化为机械能,温度下降。
这些温度的变化量可以用理想气体状态方程精确计算。
B—A 等温压缩放热
C—B 绝热压缩
D—C 等温膨胀吸热
A—D 绝热膨胀