选择特殊符号
选择搜索类型
请输入搜索
气体的绝热指数K是反映气体性质的一个重要物理量,它在研究气体的内能和气体分子内部运动规律以及热力工程技术的应用中都是很重要的。
对于理想气体,绝热指数K是常数,由气体性质决定。对于实际气体,绝热指数K与温度T和压强p有关。求解实际气体的绝热系数,可先通过实测比定压热容Cp,再根据热力学关系求解CV,最后确定绝热指数K。但是,在高压或低温的情况下,工质气体的定压比热容Cp的实验数据较少。工程上常常借助于普遍化热容差图来估算较高压强下真实气体的热容,上述的估算往往给计算绝热指数带来了不确定性。
利用气体声速的数据与热力学关系并通过准确的状态方程也能求解实际气体的绝热指数。运用球共鸣声学法已能相当准确测量气体的声速,利用该法测定声速的误差小于万分之一。故此如果方法得当,再通过热力学关系式可以较精确的确定气体的绝热指数 。
自喷井和气举井在井口安装油嘴,分别用于节流控制产量和注气量,实现对生产动态的调控。除了井口的油嘴外,油田上还有其他许多节流装置,比如井下节流阀、气举阀、分层注气的气嘴等。流体通过这些截面突缩部件的流动被称为嘴流。气体嘴流流量方程与绝热指数有关,只有当气体压力较低时,可以当作理想气体,这时绝热指数是定压比热容与定容比热容的比值,为常数;而气体的定压比热容和定容比热容都是温度和压力的函数,这两者的比值被称为比热比。对于气体绝热等熵过程,计算温度相关量时需要使用温度绝热指数;计算体积相关量时需要使用体积绝热指数,两者不相等。气体嘴流流量方程中的绝热指数实际上是体积绝热指数,是温度和压力的函数。油田生产中进行气体嘴流流量计算时,体积绝热指数一般取常数1.3,在温度和压力较高时是不合适的。
体积绝热指数随温度的升高而降低,随压力的增加而增加。当压力小于10MPa时,体积绝热指数可视为常数1.3;当压力大于10MPa时,如果出口与入口压力比大于0.9,工程上体积绝热指数取1.3的固定值是合适的,否则,比热比与体积绝热指数相差较大,用其代替体积绝热指数会带来较大的误差 。2100433B
绝热指数是指理想气体可逆绝热过程的指数,用K表示,所以理想气体比热比等于绝热指数。在天体物理学中绝热指数也指天体被压缩1%所产生的压力增大的百分比。
若流体工质在状态变化的某一过程中不与外界发生热交换,则该过程就称为绝热过程。用节流孔板测量气体流量时,流体流过节流孔板时发生的状态变化,可近似地认为是一绝热过程。为了在测量中能求出气体膨胀系数,就需要知道表征被测气体为绝热过程的绝热指数。若该气体可认为是理想气体,则其绝热指数K就是定压比热容与定容比热容之比,即
K=Cp/Cv
对于实际气体来说,绝热指数与气体的种类、所受压力、温度有关。一般地说,单原子气体的绝热指数K为1.66,双原子气体的绝热指数K为1.41。
恒压热容与恒容热容之比,该参数常用于气体压缩方面的计算,更详细可参考化工工艺设计手册第二十章压缩和膨胀机方面的实例。
理想气体可逆绝热过程的指数称为绝热指数,用K表示,所以理想气体比热比等于绝热指数。 在天体物理学中绝热指数也指天体被压缩1%所产生的压力增大的百分比。若流体工质在状态变化的某一过程中不与外界发生热交换...
1。19制冷剂 分子式 分子量u 正常蒸发温度ts(℃) 凝固点tf(℃) 临界温度 tkp(℃) 临界压力PKP绝对压力 绝热指数K 水(R718) H2O 18.02 +100 0 +...
空气绝热指数γ的测量是热力学实验中的一个重要内容,测量过程要求满足绝热条件,这增加了许多技术困难。
根据超声波在空气中的传播特性,采用驻波法测量空气绝热指数,与传统的方法(绝热膨胀或压缩法)相比,该方法仪器简单,不必对研究对象的绝热条件加以严格限制,且提高了精确度.得到的γ值结果和理论值比较吻合。说明在常温状态下,理想干燥空气的绝热指数γ=1.40理论值的正确性,同时也测得非理想干燥空气的绝热指数值γ≈1.436,它受空气湿度和气压的影响.这种测量气体绝热指数的方法适用于任何气体 。
气凝胶绝热毡:卓越的绝热节能材料
气凝胶是具有奇异绝热隔声性能的材料。它问世已有70多年(1931年发明)。它是用气体取代凝胶中的液体组分后形成的轻质二氧化硅非晶态材料。其形态为多孔三维网络结构,其中固体体积只占3%,其余的97%体积由极微细的纳米级孔隙中的空气构成。空气的移动余地很小,因而抑制了对流和气相传热。这些特性使气凝胶成为世界上密度最低的固体和最有效的绝热材料。
绝热工程
第八节 绝热工程 炼油、化工等装置中介质的运行,都是在一定的温度、压力等参数条件下进行。为了保证正常生产 的最佳温度范围和减少热载体(如蒸汽、热油、热水、烟气等)和冷载体(如液氨、液氮、冷冻盐水、 低温水等)在输送、贮存、和使用过程中热量和冷量的损失,提高热、冷效率,降低能源消耗和产品成 本,设备和管道均应进行绝热。 一. 绝热种类及目的 1. 绝热种类 设备、管道的绝热按用途可分为保温和保冷两种。 2.绝热目的 (1)生产工艺的要求 在石油化工产品的生产中, 温度是进行反应的一个重要条件, 如果不能保持过程中恒定的温度范围, 就会影响到反应的速度或变化, 直接影响产量、质量和物料的正常输送。因此,对某些设备和管道要进 行绝热。 (2)减少热损失、节约燃料 当设备和管道内的介质温度高于周围空气温度时,热量将经过金属壁传到周围空气中去造成热损 失,这个热损失是相当大的。经测算,当管径 Dg≥
理想气体可逆绝热过程的指数称为绝热指数,用K表示,所以理想气体比热比等于绝热指数。
若流体工质在状态变化的某一过程中不与外界发生热交换,则该过程就称为绝热过程。用节流孔板测量气体流量时,流体流过节流孔板时发生的状态变化,可近似地认为是一绝热过程。为了在测量中能求出气体膨胀系数,就需要知道表征被测气体为绝热过程的绝热指数。若该气体可认为是理想气体,则其绝热指数K就是定压比热容与定容比热容之比,即K=Cp/Cv。
对于实际气体来说,绝热指数与气体的种类、所受压力、温度有关。一般地说,单原子气体的绝热指数K为1.66,双原子气体的绝热指数K为1.41。
理想气体的热容不随温度变化。焓及内能分别为
理想气体的定压莫耳热容及定容莫耳热容及气体常数(R)之间有以下的关系:
理想气体的绝热指数(
单原子气体的自由度是3,因此绝热指数为:
空气主要由双原子气体组成,包括约78%的氮气(N2)及约21%的氧气(O2),室温下的干燥空气可视为理想气体,因此其绝热指数为:
以上数据和实际量测而得的数据1.403相当接近。
随着空燃比的增加,发动机油耗明显下降,这主要来自几个方面的原因:首先是采用稀薄混合气燃烧时循环热效率提高。汽油机的实际循环接近于定容加热循环,定容加热循环的指示热效率与压缩比和绝热指数的关系可以看到,提高工质的绝热指数和压缩比有利于指示热效率的提高。随着空燃比的提高,空气所占的量增加,因此工质的绝热指数逐渐接近于空气的绝热指数,理论上,在空燃比达到无限大时,热效率达到最大值。另外,由于稀燃混合气燃烧温度低,燃烧产物的离解损失减小,并且降低了与气缸壁面的传热,也使热效率得以提高。 由于稀燃发动机一般不受到高负荷时的爆燃极限的限制,可以采用较高压缩比,有利于热效率的提高。当采用稀薄混合气燃烧时,由于进入缸内空气的量增加,减小了泵气损失,这对汽油机部分负荷经济性的改善是很明显的,同时也可以采用变质调节,不用节气门或是小节流,会大大减小泵气损失,特别有利于改进部分负荷性能。
随着空燃比的增加,由于采用稀的混合气使燃烧温度降低,NOx的排放明显减少,同时燃烧产物中的氧成分有利于HC和CO的氧化,因此,HC和CO的排放也减小,然而,随着空燃比增加到一定程度,由于燃烧速度的降低可能会使燃烧不完全,HC的排放会迅速增加。如果能合理地设计紧凑的燃烧室,并组织好空气运动使燃烧在短时间内完成,那么三种排放都可以大大减少。
根据稀燃发动机运转状态,在分层稀薄燃烧到均质理论空燃比燃烧过程中,空燃比连续变化。因此,三效催化转化器不能够净化排放气体中的NOx。这是因为三效催化转化器要利用排气中的HC或CO进行NOx还原反应的缘故。在稀薄燃烧中,在排放气体中残留很多氧气,不能进行NOx还原反应。为了使NOx吸储型催化剂获得高效功能,其温度必须保持在250-500℃范围内。当超过这一温度范围发动机会自动转换到均质理论空燃比燃烧,并通过三效催化转化器进行废气处理。
然而这又与燃油经济性下降相关,为此,必须增加废气冷却装置。
利用这种冷却装置,排放气体通过NOx吸储型催化转化而被冷却,由于稀薄燃烧的范围宽,催化转化器的寿命也延长。然而,NOx吸储型催化转化器会受到硫侵蚀而中毒,所以必须把汽油中的含硫量尽量降低到最少。但是,如前所述,含硫低的汽油不是到处能供应的。大众汽车公司采取的措施是,把催化剂反应温度提高到650°以上,从而把附着在催化剂上的硫通过燃烧而加以消除。
在高速行驶时,能够保持这样高的催化剂温度,但是,在城市内行驶时则催化剂温度下降,就不能烧除附着在催化剂的硫。为此,通过NOx传感器监视硫附着在催化剂上的程度,根据监测情况提高排放气体的温度。
作为其措施,一般采用点火正时延迟,尽管这样做会引起燃油经济性恶化,但是为了净化处理NOx,这是不得已而为之。
另外,稀燃发动机由于喷射器的加入导致了对设计和制造的要求都相当的高,如果布置不合理、制造精度达不到要求导致刚度不足甚至漏气只能得不偿失。
另外稀燃发动机对燃油品质的要求也比较高。