选择特殊符号
选择搜索类型
请输入搜索
碳纤维复合材料(CFRP)具有轻质高强、热膨胀系数小、耐腐蚀、抗疲劳和材料可设计性强等优点,已成为飞行器设计中不可或缺的关键材料,其胶接连接接头的设计也成为结构设计中必不可少的关键环节。然而,由于缺乏CFRP胶接接头在服役环境下损伤的监测与识别的实证研究,其结构设计和损伤分析主要依赖理论分析和有限元仿真,导致其损伤与失效很难准确判别和预测。为此,本项目提出基于光纤光栅传感的CFRP胶接接头损伤监测与识别研究,旨在建立CFRP胶接接头损伤的应变场表征,提出CFRP胶接接头在非均匀应变下的光纤光栅光谱重构方法,构建CFRP胶接接头的光纤光栅应变分布式传感网络,建立应变场特征与损伤之间的映射关系模型,搭建在典型载荷下CFRP胶接接头的光纤光栅损伤监测系统,提出基于应变场的CFRP胶接接头损伤识别的原理与方法,为CFRP胶接接头的优化设计及光纤光栅在胶接接头损伤监测与识别中的应用奠定理论基础。
碳纤维复合材料(CFRP)胶接连接接头的设计也成为结构设计中必不可少的关键环节。本项目针对各类型CFRP胶接接头提出基于光纤光栅传感的损伤在线监测与识别问题进行研究,根据CFRP胶接接头的类型,主要从平面搭接和正交连接两类对象展开研究。 在平面搭接胶接接头损伤监测与识别研究方向主要成果有:(1)对基于非均匀应变重构方法对CFRP单搭接胶接接头的内聚损伤演化过程监测进行了研究,提出了一种基于遗传算法的FBG传感区域非均匀应变重构方法。对不同载荷下的单搭接胶接接头被粘件的应变分布进行了重构,重构的应变分布曲线与理想应变分布曲线的最大误差不超过7.43%。(2)分析胶层内聚损伤对CFRP被胶接件应变的变化情况,判断不同载荷作用下胶接接头的损伤状况,构建具备可靠性特点的分布式FBG应变传感网络系统实现了CFRP双搭接胶接接头的内聚损伤监测。实现了CFRP双搭接胶接接头载荷作用下胶层的内聚渐进损伤过程的监测。 在正交连接胶接接头损伤监测与识别研究方向主要成果有:(1)分析了L形CFRP胶接接头胶层的内聚损伤演化过程,得到了被胶接件胶接区域的层间应变分布的变化与胶层损伤演化间的映射关系,构建了基于FBG传感的L形CFRP胶接接头的内聚损伤监测实验系统,验证了仿真映射关系模型的准确性,最大误差不超过8.5%。(2)基于损伤力学确定了碳纤维复合材料π型胶接接头的损伤判定准则,仿真分析了拉伸载荷作用下碳纤维复合材料π型胶接接头的损伤过程,得到了损伤演化过程与应力应变分布变化的映射关系。在接头损伤部位埋置FBG传感器对CFRPπ型胶接接头进行了拉伸实验,利用传输矩阵法对FBG传感区的反射光谱进行了计算,并运用粒子群算法在理论上对碳纤维复合材料π型胶接接头FBG传感区的非均匀剥离应力分布进行了重构研究,重构误差不超过5.46%。 本项目利用光纤光栅传感在非均匀应变作用下的光谱特性对CFRP胶接接头损伤监测展开研究,为CFRP胶接接头的优化设计及光纤光栅传感技术在飞行器CFRP胶接接头损伤监测中的应用奠定理论基础。 2100433B
光纤光栅受外界温度、应力影响,中心波长会产生漂移,测试漂移量,根据定标情况就可得到温度或者应力大小。 温度变化的时候会改变光在物质中的传播速度,也就是说,当温度变化的时候光路中的折射率会发生变化,这个...
光栅是指用特殊加工手段(如激光雕刻)对光纤进行加工后使其只能反射一段特定波长(如1392nm)的光纤,其它波长的光任然可以通过。作用主要应用在光栅传感器上,原理是:当光纤光栅周围的环境(如温度、应力)...
TGW光纤光栅感温火灾探测系统产品简介目前国内外应用的光纤光栅传感技术由于受到光源带宽限制,一根光纤上光栅复用数量极为有限(不超过30个),无法满足火灾探测所需测点需求。理工光科发明的编码光纤光栅、全...
基于LabVIEW的光纤光栅传感监测软件
基于 LabVIEW 的光纤光栅传感监测软件 摘 要:基于 LabVIEW 的光纤光栅传感监测软件,可 以实现数据采集、存储、显示和报警等功能。该软件界面清 晰易懂、使用方便、功能扩展性强、运行稳定,可以在安全 监测方面发挥重要的作用,同时推进了光纤光栅传感器在生 活中的应用。 关键词:光纤光栅传感器;虚拟仪器;数据库 中图分类号: TP311 文献标识码: A 随着技术的发展,光纤光栅传感器广泛地应用在各个领 域,如电力电网、桥梁隧道、石油化工、航空航天,实现了 高精度、远距离、分布式和长期性监测的技术要求。本文针 对光纤光栅传感系统,提出了一种基于虚拟仪器技术的监测 软件的设计与实现方法。为实际工程的管理提供了更加可靠 的技术保障,具有广阔的应用前景。 1 光纤光栅传感技术 光纤光栅是利用紫外光改变光纤材料性质,在光纤上制 作成的一种光学无源器件,光纤光栅传感技术是利用测量环 境对光
光纤传感、光纤光栅、光纤光栅传感
光纤传感、光纤光栅、光纤光栅传感 光纤传感技术 由于光纤不仅可以作为光波的传输媒质,而且光波在光纤 中的传播时表征光波的特征参量(振幅、相位、偏振态、波长等)因外界因素 (如温度、压力、磁场、电场、位移等)的作用而间接或直接地发生变化,从 而可将光纤用作传感器元件来探测各种待测量(物理量、化学量和生物量), 这就是光纤传感器的基本原理。 光纤传感技术的分类 光纤传感器可以分为传 感型(本征型)和传光型(非本征型)两大类。利用外界因素改变光纤中光的 特征参量,从而对外界因素进行计量和数据传输的,称为传感型光纤传感器, 它具有传感合一的特点,信息的获取和传输都在光纤之中。传光型光纤传感器 是指利用其它敏感元件测得的特征量,由光纤进行数据传输,它的特点是充分 利用现有的传感器,便于推广应用。这两类光纤传感器都可再分成光强调制、 相位调制、偏振态调制和波长调制等几种形式。 光纤传感器的特点 1、
研究腐蚀缺陷对埋地管道安全输送的影响和管道泄漏监测和定位已成为埋地管道安全运行所关注的课题之一。本项目首次提出采用光纤光栅应变箍传感器沿管道环向安装在管道外壁,可以监测到由管道内部压力导致的管道外壁环向变形情况。通过长期监测环向应变变化情况可以得到埋地管道的壁厚变化状况和管道内部的压力变化情况,从而获得埋地管道的内外腐蚀程度和管道泄漏信息。本项目将研究光纤光栅应变箍传感器的增敏技术和长期可靠性问题、详细分析管道内部压力、腐蚀程度和环向应变三者的耦合关系、建立埋地管道腐蚀发展和剩余强度的力学模型、研究光纤光栅应变箍传感器所测得压力信号的降噪问题和管道泄露位置定位算法问题。本项目的完成对于提高管道安全性,降低安全隐患和运行风险,提高总体经济效益,将产生积极的推动作用。
近年来,管道事故频发,因此管道健康监测技术对于及时了解管道安全运营状态,确保国民经济和人民生命财产安全具有重要意义。随着新型材料、新型传感器的不断发展,各种管道检测及监测技术应运而生。本课题提出一种利用环向应变进行管道腐蚀监测以及管道泄漏定位的方法,同时,为了测量管道环向平均应变,开发了一种光纤光栅应变箍传感器。围绕上述监测理论及传感技术,主要进行了以下几方面的研究工作: 管道腐蚀引起的壁厚减小和管道泄漏引起的压力突降均会使管道环向应变发生变化。通过有限元软件分析了管道环向平均应变对于局部腐蚀的敏感性,表明环向平均应变测量相比于单点测量对于管道腐蚀评价更有优势。本文通过钢管道模型和PVC管道模型分别进行了腐蚀和泄漏模拟试验,验证了文中提出方法的有效性。而基于环向应变的管道泄漏监测方法中,包括用于常规泄漏量的负压波时间差定位法,以及用于泄漏量较小情况的负压波能量衰减定位法。 为满足管道环向应变监测要求,开发了一种光纤光栅应变箍传感器,可用于监测管道的环向平均应变进而评价管道腐蚀程度,且具有监测泄漏过程所引起的环向应变动态变化的能力。对自行研制封装的光纤光栅应变箍传感器进行了灵敏度、稳定性等方面的测试,测试结果表明这种传感器性能良好,适合用于管道的安全测量。设计中还包括一种应变箍传感器夹持系统,通过这种系统安装固定应变箍传感器,可使其与管道结构保持一致变形,提高测量灵敏度。 利用特征线法,分析了管道泄漏后达到稳定状态时,管道沿线的环向应变分布。结合BP神经网络,提出了一种基于管道沿线稳态环向应变分布的管道泄漏定位方法。分析比较了不同环向应变测点数量、隐含层节点数量时,该定位方法对于管道泄漏位置判断的准确率,获得了最优化的神经网络预测结构。同时,还通过叠加干扰信号证明了该方法对噪声干扰具有较好的抑制能力。 由于环向应变测点布置灵活,通过布设一定数量的环向应变测点,可使管道的目标检测泄漏量的限值大幅降低。本文利用数学模型分析了管道泄漏发生后的负压波能量衰减规律,并提出基于环向应变的管道泄漏定位方法中,使用环向应变可检半径来确定环向应变测点间距的方法,以满足对于不同目标检测泄漏量的要求。 2100433B
危及结构安全的内部损伤往往难以察觉,即使通过现代技术手段也不能得到准确有效的筛查、识别和评判。本项目利用信息熵理论,开展了结构损伤识别与反演研究,取得的主要成果有:使用传递熵来表征结构损伤后结构响应信息传递的线性和非线性程度,通过理论分析、数值模拟和模型实验等方法,探讨了结构损伤的熵变规律,建立了兼具鲁棒性和通用性的传递熵指标,采用传递熵结合替代数据的方法,可用于识别结构损伤(非线性)程度和损伤位置;针对典型构件(风电塔筒/混凝土梁)、典型损伤模式(塔筒法兰盘存在间隙和扭转错位损伤/梁截面裂缝损伤)下各优选的熵指标技术,拟定基于熵指标的损伤度量方法、标准和判据;建立了基于传递熵结合替代数据的结构损伤识别基本框架体系,揭示了其损伤识别的有效性、经济性、敏感性和鲁棒性。成果已应用于大型风电塔筒法兰盘损伤的筛查和定位。本项目研究拓展了现有的结构损伤识别技术,具有重要的理论价值和实际应用前景。 2100433B