选择特殊符号

选择搜索类型

热门搜索

首页 > 百科 > 装饰百科

逻辑门电路数字电路

逻辑门电路数字电路

数字电路或数字集成电路是由许多的逻辑门组成的复杂电路。与模拟电路相比,它主要进行数字信号的处理(即信号以0与1两个状态表示),因此抗干扰能力较强。数字集成电路有各种门电路、触发器以及由它们构成的各种组合逻辑电路和时序逻辑电路。一个数字系统一般由控制部件和运算部件组成,在时脉的驱动下,控制部件控制运算部件完成所要执行的动作。通过模拟数字转换器、数字模拟转换器,数字电路可以和模拟电路互相连接。

查看详情

逻辑门电路造价信息

  • 市场价
  • 信息价
  • 询价

  • */DFM1524(5)
  • 13%
  • 佛山市欧迪克宁夏专卖店
  • 2022-12-07
查看价格

  • */DFM1521(5)
  • 13%
  • 佛山市欧迪克宁夏专卖店
  • 2022-12-07
查看价格

电动门

  • 环保先锋HBXF-67OH智能机器人驱动:5500;单驱动:3700;标高:1.6;页码:45、46;
  • m
  • 红运
  • 13%
  • 兰州红运源围栏电动门有限公司
  • 2022-12-07
查看价格

电动门

  • -9501
  • 13%
  • 广西乾门科技有限公司
  • 2022-12-07
查看价格

电动门

  • -9511
  • 13%
  • 广西乾门科技有限公司
  • 2022-12-07
查看价格

电动门

  • 普通
  • m
  • 惠州市惠东县2019年3季度信息价
  • 建筑工程
查看价格

电动门

  • 普通
  • m
  • 惠州市惠东县2019年2季度信息价
  • 建筑工程
查看价格

电动门

  • 普通
  • m
  • 惠州市惠东县2019年2季度信息价
  • 建筑工程
查看价格

电动门

  • 普通
  • m
  • 惠州市惠东县2019年1季度信息价
  • 建筑工程
查看价格

电动门

  • 普通
  • m
  • 惠州市惠东县2019年1季度信息价
  • 建筑工程
查看价格

电路接驳

  • 含炉灶、蒸柜、冰箱、风机等
  • 1项
  • 1
  • 中档
  • 含税费 | 含运费
  • 2022-07-05
查看价格

电路改造

  • 满足项目设备电路应用,敷设6平方50米220V缆,含配控制开关、插座等;
  • 1项
  • 3
  • 中档
  • 含税费 | 含运费
  • 2021-12-08
查看价格

射频电路

  • SDVC-75-5
  • 210m
  • 1
  • 含税费 | 含运费
  • 2010-10-26
查看价格

电路游戏2

  • 展项由展台、手柄、导线及温度计等组成.摇动发机摇柄,速度越快,产生的流越大,温度升高的越快;导线越长,阻越大,温度升高越快.流流经线、器等部位时,因本身的阻因素,引起线、器等发热现象.
  • 1项
  • 1
  • 中高档
  • 不含税费 | 含运费
  • 2022-09-16
查看价格

电路游戏2

  • 展项由展台、手柄、导线及温度计等组成.摇动发机摇柄,速度越快,产生的流越大,温度升高的越快;导线越长,阻越大,温度升高越快.流流经线、器等部位时,因本身的阻因素,引起线、器等发热现象.
  • 1项
  • 1
  • 高档
  • 不含税费 | 含运费
  • 2022-09-14
查看价格

逻辑门电路分类

集成电路按照单位芯片面积集成门电路的个数,分为:

  • 小规模集成电路(SSI)

  • 中规模集成电路(MSI)

  • 大规模集成电路(LSI)

  • 超大规模集成电路(VLSI)

从制造工艺上来看,数字集成电路可分为:

  • 双极型集成电路

  • 单极型集成电路

查看详情

逻辑门电路注意事项

电源要求

电源电压有两个电压:额定电源电压和极限电源电压,额定电源电压指正常工作时电源电压的允许大小:TTL电路为5V±5%(54系列5V±10%);CMOS电路为3~15V(4000B系列3~18V)。极 限工作电源电压指超过该电源电压器件将永久损坏。TTL电路为7V;4000系列CMOS电路为18V。

电压要求

输入高电平电压应大于VIHmin而小于电源电压;输入低电平电压应大于0V而小于VILmax。输入电压小于0V或大于电源电压将有可能损坏逻辑电路。

负载要求

除OC门和三态门外普通门电路输出不能并接,否则可能烧坏器件;门电路的输出带同类门的个数不得超过扇出系数,否则可能造成状态不稳定;在速度高时带负载数尽可能少;门电路输出接普通负载时,其输出电流就小于IOLmax和IOHmax。4、工作及运输环境问题:温度、湿度、静电会影响器件的正常工作。74系列TTL可工作在0~70℃而54系列为-40~125℃,这就是通常的军品工作温度和民品工作温度的区别;在工作时应注意静电对器件的影响,一般通过下面方法克服其影响:在运输时采用防静电包装;使用时保证设备接地良好;测试器件是应先开机再加信号、关机时先断开信号后关电源。

查看详情

逻辑门电路数字电路常见问题

查看详情

逻辑门电路简介

在数字电路中,所谓“门”就是只能实现基本逻辑关系的电路。最基本的逻辑关系是与、或、非,最基本的逻辑门是与门、或门和非门。逻辑门可以用电阻、电容、二极管、三极管等分立原件构成,成为分立元件门。也可以将门电路的所有器件及连接导线制作在同一块半导体基片上,构成集成逻辑门电路。

查看详情

逻辑门电路详细介绍

CMOS门电路

由单极型MOS管构成的门电路称为Mos门电路。MOS电路具有制造工艺简单、功耗低、集成度高、电源电压使用范围宽、抗干扰能力强等优点,特别适用于大规模集成电路。MOS门电路按所用MOS管的不同可分为三种类型:第一种是由PMOS管构成的PMOS门电路,其工作速度较低;第二种是由NMOS管构成的NMOS门电路,工作速度比PMOS电路要高,但比不上TTL电路;第三种是由PMOS管和NMOS管两种管子共同组成的互补型电路,称为CMOS电路,CMOS电路的优点突出,其静态功耗极低,抗干扰能力强,工作稳定可靠且开关速度也大大高于NMOS和PMOS电路,故得到了广泛应用。

MOS管主要参数

1、开启电压VT

·开启电压(又称阈值电压):使得源极S和漏极D之间开始形成导电沟道所需的栅极电压;

·标准的N沟道MOS管,VT约为3~6V;

·通过工艺上的改进,可以使MOS管的VT值降到2~3V。

2、直流输入电阻RGS

·即在栅源极之间加的电压与栅极电流之比

·这一特性有时以流过栅极的栅流表示

·MOS管的RGS可以很容易地超过1010Ω。

3、漏源击穿电压BVDS

·在VGS=0(增强型)的条件下,在增加漏源电压过程中使ID开始剧增时的VDS称为漏源击穿电压BVDS

·ID剧增的原因有下列两个方面:(1)漏极附近耗尽层的雪崩击穿,(2)漏源极间的穿通击穿。

·有些MOS管中,其沟道长度较短,不断增加VDS会使漏区的耗尽层一直扩展到源区,使沟道长度为零,即产生漏源间的穿通,穿通后,源区中的多数载流子,将直接受耗尽层电场的吸引,到达漏区,产生大的ID4、栅源击穿电压BVGS

·在增加栅源电压过程中,使栅极电流IG由零开始剧增时的VGS,称为栅源击穿电压BVGS。

5、低频跨导gm

·在VDS为某一固定数值的条件下,漏极电流的微变量和引起这个变化的栅源电压微变量之比称为跨导

·gm反映了栅源电压对漏极电流的控制能力

·是表征MOS管放大能力的一个重要参数

·一般在十分之几至几mA/V的范围内

6、导通电阻RON

·导通电阻RON说明了VDS对ID的影响,是漏极特性某一点切线的斜率的倒数

·在饱和区,ID几乎不随VDS改变,RON的数值很大,一般在几十千欧到几百千欧之间

·由于在数字电路中,MOS管导通时经常工作在VDS=0的状态下,所以这时的导通电阻RON可用原点的RON来近似

·对一般的MOS管而言,RON的数值在几百欧以内

7、极间电容

·三个电极之间都存在着极间电容:栅源电容CGS、栅漏电容CGD和漏源电容CDS

·CGS和CGD约为1~3pF

·CDS约在0.1~1pF之间

8、低频噪声系数NF

·噪声是由管子内部载流子运动的不规则性所引起的

·由于它的存在,就使一个放大器即便在没有信号输人时,在输出端也出现不规则的电压或电流变化

·噪声性能的大小通常用噪声系数NF来表示,它的单位为分贝(dB)

·这个数值越小,代表管子所产生的噪声越小

·低频噪声系数是在低频范围内测出的噪声系数

·场效应管的噪声系数约为几个分贝,它比双极性三极管的要小

CMOS反相器

CMOS逻辑门电路是在TTL电路问世之后,所开发出的第二种广泛应用的数字集成器件,从发展趋势来看,由于制造工艺的改进,CMOS电路的性能有可能超越TTL而成为占主导地位的逻辑器件。CMOS电路的工作速度可与TTL相比较,而它的功耗和抗干扰能力则远优于TTL。此外,几乎所有的超大规模存储器件,以及PLD器件都采用CMOS 艺制造,且费用较低。早期生产的CMOS门电路为4000系列,随后发展为4000B系列。当前与TTL兼容的CMO器件如74HCT系列等可与TTL器件交换使用。MOSFET有P沟道和N沟道两种,每种中又有耗尽型和增强型两类。由N沟道和P沟道两种MOSFET组成的电路称为互补MOS或CMOS电路。CMOS反相器电路,由两只增强型MOSFET组成,其中一个为N沟道结构,另一个为P沟道结构。为了电路能正常工作,要求电源电压VDD大于两个管子的开启电压的绝对值之和,即VDD>(VTN+|VTP|)。

CMOS门电路

1、与非门电路:包括两个串联的N沟道增强型MOS管和两个并联的P沟道增强型MOS管。每个输入端连到一个N沟道和一个P沟道MOS管的栅极。当输入端A、B中只要有一个为低电平时,就会使与它相连的NMOS管截止,与它相连的PMOS管导通,输出为高电平;仅当A、B全为高电平时,才会使两个串联的NMOS管都导通,使两个并联的PMOS管都截止,输出为低电平。因此,这种电路具有与非的逻辑 功能,即n个输入端的与非门必须有n个NMOS管串联和n个PMOS管并联。

2.或非门电路:包括两个并联的N沟道增强型MOS管和两个串联的P沟道增强型MOS管。当输入端A、B中只要有一个为高电平时,就会使与它相连的NMOS管导通,与它相连的PMOS管截止,输出为低电平;仅当A、B全为低电平时,两个并联NMOS管都截止,两个串联的PMOS管都导通,输出为高电平。因此,这种电路具有或非的逻辑功能,其逻辑表达式为。显然,n个输入端的或非门必须有n个NMOS管并联和n个PMOS管并联。比较CMOS与非门和或非门可知,与非门的工作管是彼此串联的,其输出电压随管子个数的增加而增加;或非门则相反,工作管彼此并联,对输出电压不致有明显的影响。因而或非门用得较多。

3、异或门电路:它由一级或非门和一级与或非门组成。或非门的输出。而与或非门的输出L即为输入A、B的异或如在异或门的后面增加一级反相器就构成异或非门,由于具有的功能,因而称为同或门。

CMOS传输门

MOSFET的输出特性在原点附近呈线性对称关系,因而它们常用作模拟开关。模拟开关广泛地用于取样--保持电路、斩波电路、模数和数模转换电路等。下面着重介绍CMOS传输门。所谓传输门(TG)就是一种传输模拟信号的模拟开关。CMOS传输门由一个P沟道和一个N沟道增强型MOSFET并联而成,如上图所示。TP和TN是结构对称的器件,它们的漏极和源极是可互换的。设它们的开启电压|VT|=2V且输入模拟信号的变化范围为-5V到+5V。为使衬底与漏源极之间的PN结任何时刻都不致正偏,故TP的衬底接+5V电压,而TN的衬底接-5V电压。两管的栅极由互补的信号电压(+5V和-5V)来控制,分别用C和表示。传输门的工作情况如下:当C端接低电压-5V时TN的栅压即为-5V,vI取-5V到+5V范围内的任意值时,TN均不导通。同时、TP的栅压为+5V,TP亦不导通。可见,当C端接低电压时,开关是断开的。为使开关接通,可将C端接高电压+5V。此时TN的栅压为+5V,vI在-5V到+3V的范围内,TN导通。同时TP的棚压为-5V,vI在-3V到+5V的范围内TP将导通。由上分析可知,当vI<-3V时,仅有TN导通,而当vI>+3V时,仅有TP导通当vI在-3V到+3V的范围内,TN和TP两管均导通。进一步分析还可看到,一管导通的程度愈深,另一管的导通程度则相应地减小。换句话说,当一管的导通电阻减小,则另一管的导通电阻就增加。由于两管系并联运行,可近似地认为开关的导通电阻近似为一常数。这是CMOS传输门的优点。在正常工作时,模拟开关的导通电阻值约为数百欧,当它与输入阻抗为兆欧级的运放串接时。可以忽略不计。CMOS传输门除了作为传输模拟信号的开关之外,也可作为各种逻辑电路的基本单元电路。

查看详情

逻辑门电路逻辑门

逻辑门是在集成电路上的基本组件。简单的逻辑门可由晶体管组成。这些晶体管的组合可以使代表两种信号的高低电平在通过它们之后产生高电平或者低电平的信号。高、低电平可以分别代表逻辑上的“真”与“假”或二进制当中的1和0,从而实现逻辑运算。常见的逻辑门包括“与”闸,“或”闸,“非”闸,“异或”闸(也称:互斥或)等等。

逻辑门是组成数字系统的基本结构,通常组合使用实现更为复杂的逻辑运算。一些厂商通过逻辑门的组合生产一些实用、小型、集成的产品,例如可编程逻辑器件等。

查看详情

逻辑门电路与门

与门(英语:AND gate)是数字逻辑中实现逻辑与的逻辑门,功能见右侧真值表。仅当输入均为高电压(1)时,输出才为高电压(1);若输入中至多有一个高电压时,则输出为低电压。换句话说,与门的功能是得到两个二进制数的最小值,而或门的功能是得到两个二进制数的最大值。

查看详情

逻辑门电路安全措施

1、存放CMOS集成电路时要屏蔽,一般放在金属容器中,或用导电材料将引脚短路,不要放在易产生静电高压的化工材料或化纤织物中。

2、焊接CMOS电路时,一般用20W内热式电烙铁,而且烙铁要有良好的接地线;也可以用电烙铁断电后的余热快速焊接;禁止在电路通电情况下焊接。

3、为了防止输入端保护二极管反向击穿,输入电压必须处在VDD和Vss之间,即Vdd≥VI≥Vss。

4、测试CMOS电路时,如果信号电源和电路供电采用2组电源,则在开机时应先接通电路供电电源,后开信号电源。关机时,应先关信号电源,后关电路供电电源,即在CMOS电路本身没有接通供电电源的情况下,不允许输入端的信号输入。

5、多余输入端绝对不能悬空,否则容易接受外界干扰,破坏了正常的逻辑关系,甚至损坏。对于与门、与非门的多余输入端应接Vdd或高电平或与使用的输入端并联。对于或门、或非门多余的输入端应接地或低电平或与使用的输入端并联。

6、必须在其他元器件在印制电路板上安装就绪后,再装CMOS电路,避免CMOS电路输入端悬空。CMOS电路从印制电路板上拔出时,务必先切断印制板上的电源。

7、输入端连线较长时,由于分布电容和分布电感的影响,容易构成LC振荡或损坏保护二极管,必须在输入端串联1个10~20ΚΩ的电阻R。

8、防止CMOS电路输入端噪声干扰的方法是:在前一级和CMOS电路之间接入施密特触发器整形电路,或加入滤波电容滤掉噪声。

查看详情

逻辑门电路注意问题

1、TTL电路的电源均采用+5V,使用时,不能将电源与地颠倒接错,也不能接高于5.5V的电源。否则会损坏器件。2、电路的输入端不能直接与高于+5.5V或低于-0.5V的低内阻电源连接,因为低内阻电源供给较大电流而烧坏器件。

3、输出端不允许与电源或地短接,必须通过电阻与电源连接,以提高输出电平。

4、插入或拔出集成电路时,务必切断电源,否则会因电源冲击而造成永久损坏。

5、多余输入端不允许悬空。接地电阻的阻值要求R≤=500。

TTL、CMOS接口电路所谓"接口电路",就是用于不同类型逻辑门电路之间或逻辑门电路与外部电路之间,使二者有效连接,正常工作的中间电路。常用数字集成电路技术参数比较如下表:

1、CMOS电

路驱动TTL电路:用CMOS电路去驱动TTL电路时,需要解决的问题是CMOS电路不能提供足够大的驱动电流。CMOS电路允许的最大灌电流一般只有0.4mA左右,而TTL电路的输入短路电流Iis约为1.4mA。

2、TTL电路驱动CMOS电路:CMOS电路的电源电压范围宽(3V~18V),往往高于TTL电路的+5V电源,因此,用TTL电路去驱动CMOS电路时,必须将TTL的输出高电平值升高。通过接口电路可达此目的。如右图所示。3、TTL和CMOS门电路驱动其他负载:在许多场合,往往需要用TTL或CMOS电路去驱动指示灯、LED(发光二极管)或其他显示器、光电耦合器、继电器、可控硅等不同的负载。

利用CC4011"与非门"设计制作"抢答器":抢答器有多个输入端和一个复位端,当某一抢答输入端有抢答信号,则显示这一路的抢答成功。抢答成功后,使后面的抢答信号不能进入抢答器,一直到复位控制信号有效,才能解除封锁,进行下一次抢答,如右图所示。输入控制电路由U3A~U3D四个与非门组成。利用"与非"门设计制作灯头"声光控节能开关":声光控节能开关白天或光线较强的场合即使有较大的声响,也能控制灯泡不亮,晚上或光线较暗时,遇到声响(比如脚步声、说话声等)后,灯自动点亮,经过设定的时间后自动熄灭。适用于楼梯,走廊等只需短时间照明的地方。

查看详情

逻辑门电路或门

或门(英语:OR gate)是数字逻辑中实现逻辑或的逻辑门,功能见右侧真值表。只要两个输入中至少有一个为高电平(1),则输出为高电平(1);若两个输入均为低电平(0),输出才为低电平(0)。换句话说,或门的功能是得到两个二进制数的最大值,而与门的功能是得到两个二进制数的最小值。

查看详情

逻辑门电路反相器

反相器(英语:Inverter)也称非门(英语:NOT gate),是数字逻辑中实现逻辑非的逻辑门,功能见右侧真值表。

这种功能代表了数字电路中理想开关表现的假定,但是在实际的反相器设计中,元件有其需要特别关注的电气特性。实际上,CMOS反相器的非理想过渡区表现使其能在模拟电路中用作A类功率放大器(如作为运算放大器的输出级)。 2100433B

查看详情

逻辑门电路数字电路文献

复合逻辑门电路 复合逻辑门电路

复合逻辑门电路

格式:pdf

大小:578KB

页数: 5页

复合逻辑门电路

电子控制信号-逻辑门电路 电子控制信号-逻辑门电路

电子控制信号-逻辑门电路

格式:pdf

大小:578KB

页数: 30页

电子控制信号-逻辑门电路

电子技术基础数字部分目录

1 数字逻辑概论

1.1 数字电路与数字信号

1.2 数制

1.3 二进制数的算术运算

1.4 二进制代码

1.5 逻辑函数及其表示方法

2 逻辑代数与硬件描述语言基础

2.1 逻辑代数

2.2 逻辑函数的卡诺图化简法

3 逻辑门电路

3.1 MOS逻辑门电路

3.2 TTL逻辑门电路

3.3 射极耦合逻辑门电路

3.4 砷化镓逻辑门电路

3.5 逻辑描述中的几个问题

3.6 逻辑门电路使用中的几个实际问题

4 组合逻辑电路

4.1 组合逻辑电路的分析

4.2 组合逻辑电路的设计

4.3 组合逻辑电路中的竞争冒险

4.4 若干典型的组合逻辑集成电路

4.5 组合可编程逻辑器件

5 锁存器和触发器

5.2 锁存器

5.3 触发器的电路结构和工作原理

5.4 触发器的逻辑功能

6 时序逻辑电路

6.1 时序逻辑电路的基本概念

6.2 同步时序逻辑电路的分析

6.3 同步时序逻辑电路的设计

6.4 异步时序逻辑电路的分析

6.5 若干典型的时序逻辑集成电路

6.6 时序可编程逻辑器件

7 存储器、复杂可编程器件和现场可编程门阵列

7.1 只读存储器

7.2 随机存取存储器

7.3 复杂可编程逻辑器件

7.4 现场可编程门阵列

8 脉冲波形的变换与产生

8.1 单稳态触发器

8.2 施密特触发器

8.3 多谐振荡器

8.4 555定时器及其应用

9 数模与模数转换器

9.1 D/A转换器

9.2 A/D转换器

10 数字系统设计基础

10.2 算法状态机

10.3 寄存器传输语言

10.4 用可编程逻辑器件实现数字系统

11 Verilog HDL题解

2.3 硬件描述语言Verilog HDL基础

3.7 用Verilog HDL描述逻辑门电路

4.6 用Verilog HDL描述组合逻辑电路

5.5 用Verilog HDL描述锁存器和触发器

6.6 用Verilog HDL描述时序逻辑电路

7.5 用EDA技术和可编程器件的设计例题

查看详情

电子技术基础教程图书目录

前言

第1章 数字逻辑基础

1.1 数字逻辑的基本概念

1.2 数字电路的发展和分类

1.3 数制及数制转换

1.4 二进制码

1.5 带符号位的二进制数

学习指导一

习题一

第2章 门电路与逻辑代数

2.1 半导体器件的开关特性

2.2 逻辑运算关系与逻辑门电路

2.3 TTL逻辑门电路

2.4 CMOS逻辑门电路

2.5 逻辑代数的基本定律和规则

2.6 逻辑函数的变换与化简

学习指导二

习题二

第3章 组合逻辑电路

3.1 组合逻辑电路的分析

3.2 组合逻辑电路的设计

3.3 组合逻辑电路中的竞争冒险

学习指导三

习题三

第4章 常用组合逻辑器件

4.1 加法器

4.2 编码器

4.3 译码器

4.4 数据选择器

4.5 数值比较器

4.6 可编程组合逻辑器件

学习指导四

习题四

第5章 触发器的基本理论

5.1 RS触发器

5.2 JK触发器

5.3 T触发器和T触发器

5.4 D触发器

学习指导五

习题五

第6章 时序逻辑电路

6.1 时序逻辑电路的基本概念

6.2 时序逻辑电路的分析

6.3 时序逻辑电路的设计

学习指导六

习题六

第7章 常用时序逻辑器件

7.1 计数器

7.2 寄存器

学习指导七

习题七

第8章 脉冲的产生与变换

8.1 555定时器简介

8.2 多谐振荡器

8.3 单稳态触发器

8.4 施密特触发器

学习指导八

习题八

附录A 半导体基础知识

附录B 部分参考答案

参考文献

查看详情

电子技术基础数字部分习题全解图书目录:

1 数字逻辑基础 2 逻辑门电路 3 组合逻辑电力的分析与设计 4 常用组合逻辑功能器件2100433B

查看详情

相关推荐

立即注册
免费服务热线: 400-888-9639