选择特殊符号
选择搜索类型
请输入搜索
暗绿一绿黑色,呈细鳞片状集合体,有的呈致密的隐晶质毓粒(清水南口一2)。鳞片呈珍珠光泽。条痕灰绿色至带褐的绿色。解理沿(00I〕完全。具弱磁性(靠近马蹄磁铁可吸引)和强电磁性(Wcf一63型自动磁力分离仪,侧倾角12°倾角20°,电流0.2~0.3A,即可选)。比重3.05~3.16。Nm=1.6485~1.6540,正延长,干涉色一级灰至黄色带绿色色调,二轴晶(一),ZV小。
差热曲线于5500C处均有一个明显的吸热谷,是铁绿泥石型的特征。X一粉晶分析主要数据:7.05(10),3.53(9),1.562(7)。成分 (Fe,Fe,Mg,Al)6(Si,Al)4O10(O,OH)8;(Mg,Fe)3(Fe3 ,Fe2 )3〔Al2Si2O10〕(OH)8,FeO 19.8%~39.3%,Fe2O3 7.2%~31.7%。实际上是一种富含铁的鲕绿泥石。成因和用途同鲕绿泥石。
都龙锡锌矿床位于滇东南马关县都龙镇,是中国已探明的第三大锡石硫化物矿床 ),从北向南主要包括铜街、曼家寨、辣子寨3个矿段(图1)。矿区出露地层主要有新元古界—下寒武统新寨岩组片岩、大理岩夹似层状矽卡岩,寒武系碎屑岩、碳酸盐岩。其中,新寨岩组为主要赋矿地层。区内岩浆活动强烈,燕山晚期老君山花岗岩主体出露于矿区北侧,并向南倾伏于矿区地层之下,燕山晚期花岗斑岩脉在区内分布也十分广泛。此外,在矿区东南部还出露发生了变形-变质的加里东期花岗岩。
绿泥石作为该矿床最重要的热液蚀变产物之一,分布相当普遍,除了分布在矿区北部的隐伏花岗岩和脉岩附近外,在含矿层状矽卡岩及片岩中也大量产出。绿泥石化与矿化关系密切,一般绿泥石化强的地段,矿化强度也相对较高。
研究表明,该矿床的流体包裹体均一温度范围为240~400℃、平均值为318℃(刘玉平,1996 );TIMS锡石U-Pb年龄约为80 Ma,略晚于燕山晚期老君山花岗岩第三期岩相花岗斑岩、石英斑岩的形成年龄(约85 Ma)(刘玉平等,2007 )。结合矿相学和电子探针背散射图像研究,锡石与黄铜矿、银矿物、铋矿物以及绿泥石等密切共生,并穿切交代鲕状黄铁矿、铁闪锌矿、磁黄铁矿、云母和阳起石等。上述现象表明,该矿床的形成具有多期性,绿泥石化和锡(-铜-银-铋)矿化主要为岩浆期后热液成矿作用的产物(廖震,2008 )。
本研究所分析的样品主要为矽卡岩型矿石。首先,把所采样品磨制成光薄片;然后,在光学显微镜观察鉴定的基础上,选用了绿泥石化比较明显的7个样品(5-1、TJ-19、2-1-3、2-3-2、DLG-118、6-1-2、LZ1-4)进行电子探针分析。其中,样品5-1、TJ-19采自铜街矿段,2-1-3、2-3-2采自曼家寨矿段,DLG-118、6-1-2、LZ1-4采自辣子寨矿段。镜下特征显示,绿泥石主要呈片状、磷片状,与锡石、石英、萤石等矿物共生关系密切,广泛交代黑云母、阳起石及各种硫化物,或沿其矿物裂隙分布、充填(图2)。各样品的显微特征描述详见表1。
紫砂的泥料,主要有紫泥、本山绿泥和红泥三种。统称为紫砂泥。其使用、养护方法同紫砂壶。 自己爱喝的茶都可泡。 一般说,饮用花茶,为有利于香气的保持,可用壶泡茶,然后斟入瓷杯饮用。饮用大宗红茶和绿茶,...
石英36%,云母12%,高岭石12%,绿泥石16%,蒙脱石9.6%,方解石9.6%,长石5%,想咨询一下现在的价格如何。
没看出有多大用途!填方用可以!
乌龙茶生茶(轻焙火系列)特好、铁观音(中焙火或重焙火系列) 、普洱茶各种系列,红茶,绿茶等 山绿泥最好是绿茶养,红茶普洱等颜色深的茶泡养效果不如绿茶 现在的绿泥98%是化料的。...
绿泥石的化学成分分析在中国科学院地球化学研究所矿床地球化学国家重点实验室完成。测试仪器日本产EPMA-1600型电子探针;测试条件:加速电压15 kV,电子束流1.0× 10- 8A,采用美国国家标准局的矿物标样,Si、Fe、Mn的标样分别为石英、赤铁矿、铁橄榄石,其他元素采用角闪石作标样。
电子探针分析结果见表2,以14个氧原子为标准计算的结构式和特征值见表3。由于绿泥石颗粒细小、结构复杂,特别是绿泥石中其他矿物的微细包裹体、混层结构以及矿物之间的复杂共生关系等,利用电子探针分析绿泥石成分时容易产生误差。绿泥石的w(Na2O K2O CaO)可以作为判别其成分是否存在混染的指标(Foster,1962 ; Zang et al.,1995 ;Hiller et al.,1991 )。因此,本文采用w(Na2O K2O CaO)< 0.5%作为绿泥石成分是否存在混染的判别标准(G2-3-2的C11测点、2-1-3的A5测点、DLG-118的C3和C4测点不符合标准)。尽管Fe2 含量不能直接通过电子探针分析获得,但根据绿泥石中Fe3 含量一般小于铁总量的5%,本文近似地用表2中的全铁来代表。
剔除成分存在混染的测点数据后,都龙矿区绿泥石的化学成分具有如下特点:w(SiO2)为21.17%~ 29.76%,平均值为24.46%;w(Al2O3)为12.77%~ 23.40%,平均值为18.89%;w(FeO)为29.27%~ 41.46%,平均值为36.12%;w(MgO)为1.10%~ 9.85%,平均值为6.57%。其中,铁、镁含量变化较大,且此消彼长,反映了它们在绿泥石中的相互置换比较普遍;另外,钾、钠、钙的含量变化可能指示了绿泥石化的程度。在绿泥石的Fe-Si(原子数)图解中(图3,Fe、Si原子数以28个氧原子为标准换算),所测绿泥石主要为富铁种属的假鳞绿泥石、鲕绿泥石、蠕绿泥石(铁绿泥石)及铁镁绿泥石。
Laird(1988)提出的Al/(Al Mg Fe)-Mg/(Fe Mg)图解,被广泛地用于识别绿泥石与其母岩的关系。一般认为,由泥质岩蚀变形成的绿泥石,比由镁铁质岩石转化而成的绿泥石具有较高的Al/(Al Mg Fe)比值(> 0.35)。由表3可知,2-1-3、TJ-19、LZ1-4、6-1-2等4个样品的Al/(Al Mg Fe)比值为0.35~ 0.41,反映绿泥石的化学成分主要来源于泥质岩;而样品5-1、DLG-118的Al/(Al Mg Fe)比值为0.31~ 0.34,平均值为0.33,反映绿泥石的化学成分主要来源于镁铁质岩。总体来说,该矿床绿泥石的Al/(Al Mg Fe)值为0.31~0.41,平均值为0.36(接近0.35),反映绿泥石化学成分主要受泥质与铁镁质2类原岩控制,且两者的比例接近。
高Mg/(Fe Mg)比值的绿泥石一般产于基性岩中,而低Mg/(Fe Mg)比值的绿泥石产于含铁建造中。该矿床绿泥石的Mg/(Fe Mg)比值为0.05~ 0.37,平均值为0.25,相对偏低,指示绿泥石的形成环境应为含铁建造。
在Al/(Al Mg Fe)-Mg/(Fe Mg)图解中(图4a),绿泥石样品的投影点比较分散,总体上显示一定的负相关关系,这与绿泥石部分来自于泥质岩,部分来自于铁镁质岩或富镁铁质流体有关,负相关性可能反映了混合比例的变化。
该矿床绿泥石的AlⅣ值为1.07~ 1.60,AlⅥ值为1.06~1.50,AlⅣ值大多数大于AlⅥ值(仅一个分析点除外),这可能与八面体位置上少量Fe对Al的置换有关。AlⅣ-AlⅥ关系图(图4b)显示,AlⅣ与AlⅥ存在一定的正相关性,说明在AlⅣ对Si的替换过程中,伴随着AlⅥ在八面体位置上对Fe或Mg的置换。该矿床绿泥石AlⅣ与AlⅥ之间的相关关系为AlⅣ =0.6835 AlⅣ 0.336(R2= 0.7442)。因此,本区绿泥石的Al与Si置换不属于AlⅣ与AlⅥ间接近于1∶1的钙镁闪石型替代(Xie,1997),AlⅣ对Fe或Mg的置换比例高于AlⅣ对Si的置换。当AlⅣ在四面体上置换Si时,产生的负电荷完全能够被更多的AlⅣ在八面体上置换Fe或Mg来补偿,这也在一定程度上反映了绿泥石中Fe3 含量很少。AlⅣ-Fe/(Fe Mg)图解显示(图4c),随着Fe/(Fe Mg)值的增加,AlⅣ值也增加,这表明在Fe置换Mg的过程中,由于绿泥石结构的调整,允许更多的AlⅣ置换Si(Xie,1997 ;Kranidiotis et al.,1987 )。在铁镁质岩石的低级变质作用和活动地热体系中,粘土矿物、云母等向绿泥石的转换,常伴随着Al对Si的置换(Hillier,1993) 。所以,该矿床绿泥石中Fe对Mg的置换有助于绿泥石的成熟化。
该矿床绿泥石Fe AlⅣ与Mg的相关关系为:Fe AlⅣ=- 1.0334 Mg 5.9552(r2= 0.9894)(图4d),呈近1∶ 1的负相关关系,表明绿泥石的八面体位置主要被Fe、Al、Mg等3种元素占据,主要发生Fe AlⅣ对Mg的置换。结合Fe与Mg的关系(图4e):Fe= - 0.8307 Mg 4.4399(r2=0.9389),以及AlⅣ与Mg的关系(图4f):AlⅣ= - 0.2027Mg 1.5153(r2= 0.5487),表明Fe对Mg的置换反应是绿泥石八面体位置上最重要的反应,即绿泥石八面体位置上以Fe置换Mg为主,AlⅣ置换Mg为辅,反映了绿泥石可能产于含铁高的背景中,即前文提到的含铁建造。
绿泥石是一种中-低温压环境下的常见矿物,由于其结构与成分上的可变性和非计量性,绿泥石成分和结构的变化,与其形成温度之间的关系一直受到研究者们的关注(Cathelin-eau et al., 1985 ;1988 ;Walshe,1986 ;Decaritat et al.,1993 ;Stefano,1999 )。Stefano(1999) 提出了运用X射线衍射(XRD)数据探讨绿泥石地质温度计的新方法,并用该方法分析了来自不同地热场的绿泥石样品,通过验证墨西哥的Los Azufres和美国Gulf of California的Salton Sea两个典型地热体系的绿泥石数据,证明具有较好的适用性。其拟合的绿泥石形成温度与(001)面网间距d001之间等式为:
d001(0.1 nm)= 14.339- 0.001 t(℃) r= 0.95 (1)
按照Stefano分析,在缺少XRD数据的情况下,可运用Rausell-Colom等(1991) 提出的、并经过Nieto(1997) 修正完善的绿泥石成分与d001之间的关系式(等式2)计算d001:
d001(0.1 nm)= 14.339- 0.1155AlⅣ-0.0201Fe2 (2)
根据等式(1)、(2)计算,都龙锡锌矿床绿泥石d001和形成温度(表3)结果表明,绿泥石的形成温度范围为231~ 304℃ ,平均为269℃ ,属于中-低温热液蚀变范围,与流体包裹体测温获得矽卡岩型锡锌矿石的成矿温度范围(240~ 400 ℃ ,刘玉平,1996 )基本一致。绿泥石的形成温度变化范围较大,可能主要与该区热液活动的复杂多变有关。在空间上,绿泥石形成温度大致具有由北向南降低的趋势,这可能与矿体与花岗岩或隐伏花岗岩的距离有关。
绿泥石的形成过程,是一个由水-岩反应控制的动力学过程,受温度、压力、水/岩比、流体和岩石化学成分等因素的制约。Inoue(1995) 认为,在脉状矿床的热液蚀变中,在低氧化、低pH值的条件下,有利于形成富镁绿泥石;而还原环境则有利于形成富铁绿泥石。铁绿泥石的形成,还可能与流体的沸腾作用有关。都龙锡锌矿床的绿泥石,主要为富铁种属的假鳞绿泥石、鲕绿泥石、蠕绿泥石(铁绿泥石)及铁镁绿泥石,指示形成于还原环境。绿泥石中的离子反应主要表现为Fe和Mg的置换反应,指示了绿泥石产于含铁建造背景中。
矿物组构特征显示,绿泥石的形成与热液流体密切相关。其形成机制可能主要有2种:一种是溶蚀-结晶,即流体溶蚀矿物并原地重结晶形成绿泥石,这种机制往往表现为绿泥石交代其他矿物的特征,如绿泥石交代黑云母、角闪石,表现出明显的交代蚀变特征,甚至出现交代假象(图2b、2c);另一种是溶蚀-迁移-沉淀结晶,与第一种的区别是流体溶蚀矿物后经过了一定距离的搬运,再沉淀、结晶形成绿泥石。这种机制下形成的绿泥石多沿各矿物裂隙生长,并显示细脉状分布特征,如在显微镜下常见绿泥石沿闪锌矿、磁黄铁矿等矿物裂隙充填生长,有时甚至形成绿泥石细脉(图2d)。
已有研究表明 ,该矿床锡(-铜-银-铋)矿化主要与燕山晚期的岩浆热液活动有关,与本文研究的绿泥石同属岩浆热液作用的产物。当含锡(-铜-银-铋)热液流体遇到铁镁矿物,如黑云母、角闪石时,可交代铁镁矿物形成绿泥石,同时伴有锡石等矿物的沉淀,绿泥石表现为与锡石密切共生;也可萃取铁镁矿物中的Fe、Mg元素迁移到适当的位置,如矿物裂隙中,再沉淀结晶形成绿泥石,并伴随成矿作用的发生。可见,Fe、Mg元素,特别是Fe元素的加入,对绿泥石的形成具有关键作用。绿泥石的形成,与岩浆热液矿化过程紧密相关,可以作为成矿流体发生沉淀的一种标志,具有一定的找矿意义。
综合前文分析,该矿床绿泥石的广泛分布及其与矿化的密切关系,表明燕山晚期岩浆活动对该矿床的叠加改造作用显著。绿泥石的形成温度(231~ 304 ℃)及环境(还原环境、含铁建造),指示岩浆热液成矿(即锡(-铜-银-铋)矿化)温度和环境为中-低温的还原环境。 2100433B
绿泥石片岩
绿泥石片岩 A.英文名称 ChloriteschistB. 岩石分类变质岩-低度区域变质-变质基性岩 C. 矿物组成主要矿物为绿泥石,但次要矿物之含量有时相当高,包括石英、滑 石、蓝闪石、云母、黄铁矿、方解石、磁铁矿、钛铁矿及石榴子石等。 D.岩性描述与化学成分片理明显之绿色至暗绿色岩石,呈鳞片状或鳞片粒 状,有时含有白色条带。绿泥石片岩可再依其次要矿物分成蓝闪石绿泥石片 岩、滑石绿泥石片岩及角闪石绿泥石片岩等。台湾之绿泥石片岩,依其组成矿 物之粒度,可分为细粒与中粒两种。细粒绿泥石片岩又可细分成两类: (1)等粒 形:细粒等粒之绿色岩石,片理甚发达,主要矿物为绿泥石、绿帘石、角闪 石、石英、黝帘石及方解石; (2)带状型:由方解石、石英及斜长石组成之白色 条纹,其绿色部分则由绿泥石及绿帘石组成。而中粒绿泥石片岩亦可细分成两 类: (1)等粒形:呈绿色,具中粒及等粒结构,大部份由绿泥石、
绿泥石化岩体的保护层开挖
金安桥水电站坝基裂面绿泥石化岩体 开挖方法的研究 (中国水利水电第四工程局金安桥项目部) 摘 要 金安桥水电站,位于云南省丽江市境内的金沙江中游河段上,是金沙江中 游河段规划的第五级电站。 工程坝基开挖具有开挖工程量大、工期紧、强度高、地质情况复杂 等多种因素,特别是河床底部分布有大量的裂面绿泥石化岩体, 该种岩体具有“硬、脆、 碎”的特点,未扰动前呈似完整状的原位碎(块)裂结构特征,但在开挖爆破扰动后, 将引起岩体结构松弛,抗剪强度及抗变形能力下降,影响坝基岩体质量,故该类岩体的 开挖方法的选择和研究显得十分重要,若开挖方法不当,将对重力坝坝基变形、抗滑稳 定产生不利的影响,并有可能造成坝基进一步下挖,对整个工程的投资及工期影响十分 大,针对此情况,对该类岩体的开挖方法进行了试验和比选, 最终确定了影响最小的 “保 护性开挖”施工方法,经声波检测满足大坝建基的要求,文章重点对裂面绿泥石化
据野外产状和分布特征,岩相学测定、变晶矿物成分和组合标志以及硅酸盐成分分析表明,组成桐柏黑硬绿泥变质带的原岩主要分属于两种类型,一是辉长岩类,二是斜长花岗岩类。
类岩石中黑硬绿泥石的形成过程虽长,但基本上是在一个变质作用过程中的产物,只是其发育有先有后而已。早阶段形成的黑硬绿泥石都和糜棱叶理相一致,晚阶段发育起来的硬绿泥石则斜交片理,二者虽有穿插现象但绝无交代作用可见,而且较大的变斑晶黑硬绿泥石可有筛状变晶结构,中包斜长石、绿帘石、角闪石或石英长石,白云母绿帘石等矿物包体。这些包体矿物一般都是原岩中原生矿物粒化重结晶的变晶矿物。说明这两类岩石中的黑硬绿泥石都是在原岩受到糜棱岩化作用过程中的变晶矿物,所以,黑硬绿泥石的变质作用实是韧性剪切变形作用带内辉长岩体和斜长花岗片麻岩体的一种退变质作用的结果。
变质作用时代也就是糜棱岩形成的时代,其中白云斜长片麻糜棱岩的39Ar/40Ar同位素年龄为230Ma,相当于印支期,也就是说桐柏北部黑硬绿泥石变质带的形成时代和整个东秦岭大别山造山带发育的印支期糜棱岩化变形作用是同步发展起来的。其形成时的温压条件,参考变质作用带内相邻同变质期岩类中多硅白云母的Si=3.40~3.50,按MassonneandSchreyer(1987)的图解,于温度达673.15K时,压力应在0.8GPa~1.2GPa之间。若依其平均压力1GPa,采用Kroph(1978)和GreenandHellman(1982)[15]石榴石多硅白云母地质温度计,求得本带变质作用的温度为644.15K~765.15K。也就是说桐柏北部黑硬绿泥石变质带中,黑硬绿泥石 黑云母 白云母±绿泥石±石英 钠长石和黑硬绿泥石 白云母 阳起石±绿泥石 钠长石组合形成作用的温压条件是在约1.0±0.3GPa,703.15±323.15K,黑硬绿泥石可稳定的情况下,这和鄂北蓝片岩带形成的温压条件p/GPa=0.5~0.7,T=623.15K~723.15K是相近的。由于这个黑硬绿泥石变质带无硬柱石发育,而且有富锰铝榴石石榴石、黑云母和绿帘石形成。因此,其变质作用温度要比北美加里福尼亚有硬柱石出现的黑硬绿泥石变质带的形成温度要高些,即在临近黑云母变质带的温度范围内。桐柏黑硬绿泥石的变质带内无典型的蓝闪石分布,而常见冻蓝闪石和蓝透闪石与镁钠闪石产生,也表明这个变质带形成时的温度可能相对较高,应相当于通常的绿泥石带的上部至黑云母带的下部温度之间的过渡带内。这和地质温度计的计算结果是一致的。桐柏黑硬绿泥石变质带内的黑硬绿泥石与多硅白云母、阳起石、绿帘石、钠长石和绿泥石共生,两无钾长石发育,这和Brown(1975)对含黑硬绿泥石的高压绿片岩相的分析相吻合。因此,桐柏黑硬绿泥石变质带应属于高压条件下的较高温蓝闪绿片岩相变质形成物 。
蓝片岩相变质的硬绿泥石 纤锰柱石 多硅白云母组合产在开山屯镇西南的怀庆街上所附近。该种变泥质岩呈灰黑色,片状构造,显微镜下糜棱岩组构清晰。岩石由硬绿泥石、石英(或玉髓)、多硅白云母、绿泥石、纤锰柱石等组成。硬绿泥石呈板状或不完全的放射状集合体产出。多硅白云母为片状集合体。纤锰柱石呈针状、纤维状分布,多色性浅棕黄、黄绿至浅绿、鹅黄色,平行消光,最高干涉色二级中部,这与已知铁纤锰柱石的特征符合。矿物的电子探针成分分析结果及分子式计算见表"。把本区发现的纤锰柱石与已知的纤锰柱石、铁纤锰柱石的成分相比较,前者的SiO2(33.89%~36.18%)略低于后二者,其高值接近于铁纤锰柱石(37.38%)和纤锰柱石(A)37.39%~38.30%的低值,差别分别近于3.21%和3.24%;前者的Al2O3含量高值28.56%,也比后二者低。其MnO和FeO含量都与铁纤锰柱石相当,而与纤锰柱石(A)相差较大。它与富锰纤锰柱石相比,SiO2和Al2O3值都很接近。可见,吉林延边开山屯地区发现的纤锰柱石应为铁纤锰柱石 。
硬绿泥石是指一种硅酸盐矿物,为锰、镁和铁的碱性铝硅酸盐。矿物颜色为暗绿色,具有珍珠光泽。如果富含锰就称为锰硬绿泥石;富镁则称镁硬绿泥石。