绿泥石是一种中-低温压环境下的常见矿物,由于其结构与成分上的可变性和非计量性,绿泥石成分和结构的变化,与其形成温度之间的关系一直受到研究者们的关注(Cathelin-eau et al., 1985 ;1988 ;Walshe,1986 ;Decaritat et al.,1993 ;Stefano,1999 )。Stefano(1999) 提出了运用X射线衍射(XRD)数据探讨绿泥石地质温度计的新方法,并用该方法分析了来自不同地热场的绿泥石样品,通过验证墨西哥的Los Azufres和美国Gulf of California的Salton Sea两个典型地热体系的绿泥石数据,证明具有较好的适用性。其拟合的绿泥石形成温度与(001)面网间距d001之间等式为:
d001(0.1 nm)= 14.339- 0.001 t(℃) r= 0.95 (1)
按照Stefano分析,在缺少XRD数据的情况下,可运用Rausell-Colom等(1991) 提出的、并经过Nieto(1997) 修正完善的绿泥石成分与d001之间的关系式(等式2)计算d001:
d001(0.1 nm)= 14.339- 0.1155AlⅣ-0.0201Fe2 (2)
根据等式(1)、(2)计算,都龙锡锌矿床绿泥石d001和形成温度(表3)结果表明,绿泥石的形成温度范围为231~ 304℃ ,平均为269℃ ,属于中-低温热液蚀变范围,与流体包裹体测温获得矽卡岩型锡锌矿石的成矿温度范围(240~ 400 ℃ ,刘玉平,1996 )基本一致。绿泥石的形成温度变化范围较大,可能主要与该区热液活动的复杂多变有关。在空间上,绿泥石形成温度大致具有由北向南降低的趋势,这可能与矿体与花岗岩或隐伏花岗岩的距离有关。
绿泥石的形成过程,是一个由水-岩反应控制的动力学过程,受温度、压力、水/岩比、流体和岩石化学成分等因素的制约。Inoue(1995) 认为,在脉状矿床的热液蚀变中,在低氧化、低pH值的条件下,有利于形成富镁绿泥石;而还原环境则有利于形成富铁绿泥石。铁绿泥石的形成,还可能与流体的沸腾作用有关。都龙锡锌矿床的绿泥石,主要为富铁种属的假鳞绿泥石、鲕绿泥石、蠕绿泥石(铁绿泥石)及铁镁绿泥石,指示形成于还原环境。绿泥石中的离子反应主要表现为Fe和Mg的置换反应,指示了绿泥石产于含铁建造背景中。
矿物组构特征显示,绿泥石的形成与热液流体密切相关。其形成机制可能主要有2种:一种是溶蚀-结晶,即流体溶蚀矿物并原地重结晶形成绿泥石,这种机制往往表现为绿泥石交代其他矿物的特征,如绿泥石交代黑云母、角闪石,表现出明显的交代蚀变特征,甚至出现交代假象(图2b、2c);另一种是溶蚀-迁移-沉淀结晶,与第一种的区别是流体溶蚀矿物后经过了一定距离的搬运,再沉淀、结晶形成绿泥石。这种机制下形成的绿泥石多沿各矿物裂隙生长,并显示细脉状分布特征,如在显微镜下常见绿泥石沿闪锌矿、磁黄铁矿等矿物裂隙充填生长,有时甚至形成绿泥石细脉(图2d)。
已有研究表明 ,该矿床锡(-铜-银-铋)矿化主要与燕山晚期的岩浆热液活动有关,与本文研究的绿泥石同属岩浆热液作用的产物。当含锡(-铜-银-铋)热液流体遇到铁镁矿物,如黑云母、角闪石时,可交代铁镁矿物形成绿泥石,同时伴有锡石等矿物的沉淀,绿泥石表现为与锡石密切共生;也可萃取铁镁矿物中的Fe、Mg元素迁移到适当的位置,如矿物裂隙中,再沉淀结晶形成绿泥石,并伴随成矿作用的发生。可见,Fe、Mg元素,特别是Fe元素的加入,对绿泥石的形成具有关键作用。绿泥石的形成,与岩浆热液矿化过程紧密相关,可以作为成矿流体发生沉淀的一种标志,具有一定的找矿意义。
综合前文分析,该矿床绿泥石的广泛分布及其与矿化的密切关系,表明燕山晚期岩浆活动对该矿床的叠加改造作用显著。绿泥石的形成温度(231~ 304 ℃)及环境(还原环境、含铁建造),指示岩浆热液成矿(即锡(-铜-银-铋)矿化)温度和环境为中-低温的还原环境。 2100433B