选择特殊符号
选择搜索类型
请输入搜索
林木生长信息的无线远程监测技术是精准林业的重要需求,本项目旨在研究立木胸径的远程遥测方法,并解决林内信号传输衍射计算问题。主要成果摘要如下: 1.研究了信号在人工林内的传输特性;结合人工林的配置特点,以四层独立介质层分层独立分析建模的方法对射频信号在人工林内的总体传播模型进行了简化,提出树冠衰减屏和树干吸收屏的概念,并给出了电磁波在人工林介质中传播损耗计算公式。 2.应用一致性几何绕射理论(UTD),以多边形近似法简化了活立木模型,研究了模型的信息存储,应用反向射线跟踪法解决了人工林内信号的路径搜索及传输寻迹问题,求出了接收点已知和未知两种情况下绕射路径的通用解。 3.在总体传输模型及射线追踪研究结果的基础上,对吸收屏(树干部分)进行了重点研究:1)给出了活立木垂直入射和斜入射两种条件下的绕射模型;2)应用电磁波理论、Fresnel-Kirchhoff原理和UTD理论推导了活立木绕射场求解公式;3)对近似计算造成的阴影边界处过渡区的不连续,采用了过渡区修正,得出了修正绕射系数表达;4)分析了绕射盲区的影响因素,在计算焦散距离的同时得出了盲区计算公式;5)以白杨木人工林为采样区域,进行活立木绕射场仿真模拟,验证了模型的正确性。 4.研制了立木胸径测量传感器,可以与无线网络连接,实现树径的实时连续无线远程监测。测量理论精度可达到7μm, 一次调整后的生长量测量最大范围(周长)为75mm.. 5.建立了基于与自主研制的无线节点、树径传感器以及远程监测软件的立木胸径生长变化的无线远程监测系统,通过生长监测验证了系统可用性。
现代林业研究与数字化经营管理对于森林资源信息的采集技术具有新的要求,尤其是树木生长信息的实时、准确的远程自动采集是森林调查人员的期盼。目前的卫星遥感测量法不能精确测量单棵树木的生长信息,往往不满足一些研究的需要;因此,对于单木来说,目前主要还是通过人工直接进入实地测量,或通过观测站自动记录数据,定期回收数据,该方法劳动量大、效率低。本研究针对林业研究和林业信息化技术的需要,在分析国内外研究现状和申请人前期研究的基础上,提出开展立木胸径遥测方法及其信号传输与衍射规律研究,该项目主要包括基于ZigBee协议的无线传感器节点及其标定模型、无线射频信号在林内的传输与衍射(绕射)规律、传感器在林内的优化布置策略等主要研究内容。关键解决林内信号的传输与衍射规律,提出射频信号场强模型、信号在立木附近的衍射盲区计算方法,为林内传感器优化布设提供理论基础,为立木胸径及其环境信息的遥测提供新的技术方法。
理论上可以实现,但实际当中几乎没有这样使用的。占用的射频带宽太大,而且极易受到干扰。如果先转为数字信号再无线传输,对转换设备的要求有太高了(成本太高)。
需要一套无线视频监控系统。对于用户来说,一台好的网络摄像机是非常重要的,它负责对监视区域进行摄像并转换成电信号,再进一步用于传输,其质量直接影响视频监控系统的整体应用。
你好: 首先,电话线中的数据传输使用的是模拟信号,而网络的信号同样也是模拟信号,为什么他们能在同一条信道上传输而又不互相影响呢?因为二者信号的频率各不相同,所以,才能够同时传输!网络信号的传输在链路中...
基于GPRS无线传输的钢轨伤损传输方法设计与研究
为了解决钢轨探伤在信息传输中面临的问题,提出基于GPRS无线传输的钢轨伤损信息传输系统方案,详细分析系统结构原理,重点介绍无线传输模块的电路原理图,并给出无线传输模块和远程终端模块的软件结构。根据实验结果和数据分析,基于本系统的数据传输质量较好,丢包率较低。
无线信号在泄漏通信电缆中的传输
无线通信用于自由空间,能够实现移动中的通信,其根本原因是自由空间对无线电波来讲是良好的传输媒介。而在封闭空间(地下窒、隧道等),由于空间各个面相距很近,巷道壁、地下室的墙壁、地面、天花板对电磁波有强列的吸收、衰减作用,因此在封闭空间中电磁波不能像在自由空间那样传播。
无线通信新技术的不断涌现,推动了遥测技术的发展。在国际遥测会议 (ITC)中,关于 OFDM,MIMO,MIMO-OFDM 的论文逐年增多。2003 年,加拿大太平洋微波研究中心 Durso报告了他们实验室的研究成果,他们将 OFDM 技术应用于战术无人机遥测链路,采用编码 OFDM(COFDM)技术,子载波采用 QPSK 或者16-QAM,信号带宽 8 MHz,根据不同的编码效率与子载波调制方式,传输速率为 5 Mbps~20 Mbps,该系统可以有效地对抗多径干扰,而且可以进行非视距通信。2005 年,国际遥测会议专门设立一个议题讨论提高遥测频谱效率(T&E/S&T Spectrum Efficient Technology),在这个议题中,美国喷气推进实验室(Jet Propulsion Laboratory,JPL)Darden认为在遥测链路中,OFDM 是一种先进的技术。Tian 等人将 OFDM 技术用于飞行器电力线高速数据传输,可以节约飞行器仪器之间电缆的数量。2008 年,Lu 与 Roach 等人分析了物理层采用 OFDM 的iNET (增强遥测综合网)性能,并对系统进行了实验室的测试。2009 年,Ehichioya 与Kamirah研究 OFDM 在航空遥测信道的性能,说明 OFDM 在航空遥测中具有优势。
对于 MIMO 技术的关注,是从 2002 年开始,Jensen 等人研究了空时编码,并针对航空遥测信道进行了分析。在后面的几年里,越来越多的遥测研究人员开始关注 MIMO。在 2006 年遥测会议上,组委会专门设计一个议题,交流 MIMO 技术,在 2007 年、2009 年都专门设置分会场讨论 MIMO 技术。在 2006 年,美国密苏里州科技大学遥测学术中心 Chris Potter 等人就开始研究 MIMO 技术,在随后的几年中,他与自己导师 Kosbar 每年都在遥测会议上展示他们的研究成果。到 2009 年,他们成功地将 MIMO 应用于航空遥测中,开发了 1 套 2×2 的MIMO 系统,机上 2 个天线,地面 2 个天线。对于 MIMO,就技术而言,主要集中在信道估计、空时编码。
从已有的报道来看,目前 OFDM、MIMO 技术在遥测领域的研究和应用主要集中在航空遥测。在航空信道下,当飞行器距离较远时,受到地球曲率半径的影响,导致天线仰角很低,此时,地面与山体等反射都进入天线的主波束内,形成多径干扰,而且飞行器需要传输大量视频数据,数据率高。另外航空信道下的飞行器能源是可以补给的,可采用功率较大的发射功率。所以在航空遥测领域,OFDM 技术有着广泛的应用前景。在卫星、飞船等遥测中,OFDM、MIMO 的研究和应用还未见报道。这些飞行器能量由电池提供,发射功率非常有限,功率放大器为非线性,况且卫星、飞船基本上不存在多径干扰,是一个理想的加性高斯白噪声(Additive White Gaussion Noise,AWGN)信道,就目前而言,不宜采用 OFDM 技术。但是不论是航空遥测,还是卫星遥测,使用 MIMO 技术都可以提高信道容量,节约功率,提高传输的可靠性,所以 MIMO 在遥测领域的应用具有很大潜力。对于 SC-FDE技术,在遥测会议中未见报道,但是根据它的特点以及优异的抗多径性能,在航空遥测、导弹遥测等存在严重多径干扰的信道下,是一种鲁棒的遥测体制,很有必要深入研究。
虽然现有的无线遥测系统已经有了很大的发展,并逐步被应用到工农业的各个领域中去。但是这些系统一些功能的实现上仍具有明显的缺陷:
用现有的无线遥控测试设备组成的系统进行多目标测量和控制时,由于无线传输中的干扰及有限的无线资源,系统只能传输极少数的遥测信息和控制信息。这会影响系统工作的实时性和精确性。
对于多目标的遥控测试系统,很大一部分的要求来自于民用方面,如导航、石油/液化气管道测量、地震监测、医院监护、工厂远距数据采集等民用方面都提出了很大的要求。对于民用,若不考虑价格,就意味着丢掉市场。因此,从整体设计开始,就得从方案、采用的技术、器件、工艺等方面考虑价格问题。
无线遥控侧试系统由于其通信信道不像有线通信那样是封闭的,因此它比较容易被侵入或攻击。如何保证其网络的安全性无疑也是当今网络通信发展的一门重要课题。
同国外系统相比,大部分国产通用系统主要是模仿国外系统开发的,虽然部分系统已经汉化,但是中国市场中某些行业规范,他们很难满足。而且人力资源以及资金限制使得它们可能在很长时间内只能维持对现有系统功能的维护和补充。
随着电子产品小型化、数字化、高频化和多功能化等的快速发展与进步,作为电子产品中电气的互连件—PCB中的导线的作用,已不仅只是电流流通与否的问题,而且是作为“传输线”的作用。也就是说,对于高频信号或高速数字信号的传输用的PCB之电气测试,不仅要测试线路的“通”、“断”、“短路”等是否合乎要求,而且还要其“特性阻抗值”是否合乎要求,只有这两方面都“合格”了,PCB才符合允收性。
1、信号传输线的提出
1.1 信号传输线的定义
这是为了区别常规导线而提出的名称。按IPC-2141的3.4.4条的定义:“当信号在PCB导线中传输时,若导线的长度接近信号波长的1/7,此时的导线便成为信号传输线”了。有的文献认为,导线的长度接近波长的1/10时,应按信号传输线处理。显然,后者更严格(显得‘过分’),但大多数人认定为前者。
大家知道,电流通过导体时,会受到一个“阻力”,在直流电中是电阻,符合欧姆定律。即:
R=V/I
在交流电中的“阻力”是由“电阻”、“感抗”和“容抗”的综合结果,即:
Z=〔R2+(XL-XC)2〕1/2
1.2 信号传输线的判断
元件有很高频率信号传输,但经过导线传输后,频率下降(时间延迟)了,导线越长,时间延长越厉害,当导线的长度接近于波长时,或信号速度(频率)提高到某一范围时,传输的信号便会出现明显的“失真”。
⑴高频信号的传输。
假设:(一)元件的信号传输频率f=10MHZ,导线L=50cm,则
C=f*λ
λ= C/f
λ/L= C/f*L=60
属于常规导线。
(二)元件的信号传输频率f=1GHZ,导线的长度L=10cm,则
λ/L= C/f*L=3
不属于常规导线,应进行特性阻抗值控制的传输线。
⑵脉冲信号的传输。在数字电路中从“0”到“1”的上升时间tr是很短的.但可用下面公式来计算频率fmax:
fmax=0.35/tr
假设:元件的上升时间tr是=2ns,则
fmax=0.35/tr=175 MHZ
L= C/ fmax*7=24.5 cm
当导线长度≥24.5 cm时,应作为信号传输线处理。
目前:TTL(transister-transister logic)的tr为4ns→1ns→0.5ns→
ECL(emitter-coupled logic) 的tr为3ns→1ns→0.5ns→
⑶信号传输线必须进行特性阻抗值控制。
如果不进行特性阻抗值控制时,在线路中产生的信号“反射”,会“抵消”正在传输信号。λ/L比率越小,“反射”越严重,则会产生如下问题:
①信号(或能量)传输效率明显下降;
②由于反复干扰(抵消)信号传输,将随着频率增加而严重化;
③部分“能量”是会以电磁波辐射出去,在内部导线或网络之间形成EMI。
1.3、信号普通线与信号传输线的差别
信号普通线与信号传输线的差别主要有三个方面:
⑴信号普通线是指第一信号传输被接受完成后,才发送第二个信号,因此第一个信号传输过程中的“反射”信号,不会抵消第二个信号。而信号传输线的特征是第一个信号传输还没有被接受,就发送第二个信号,因此第一信号传输过程中产生的“反射”信号就可抵消第二个信号而削弱了第二个信号,频率越快的传输信号,则“失真”就越多,甚至信号消失。
⑵信号普通线,由于信号传输速度慢,“反射”信号不会抵消后面传输的信号。因此,导线的粗细、缺陷(缺口、针孔)等是允许某些程度存在着。而在信号传输线中,这些粗细、缺陷等要进行十分严格的要求。
⑶信号普通线,不要求特性阻抗值控制,只要求“通”、“断”、“短路”的电气测试。而信号传输线要求特性阻抗值控制,即除了要求“通”、“断”、“短路”的电气测试外,还必须有特性阻抗值控制的测试。
2、PCB中特性阻抗值Z0的设计
2.1、Z0的的结构类型与计算方法
主要有两种:微带线和带状线及其派生的各种各样的结构,如何选用,应视元件和电子产品而定。
微带线(适合Z0较大的场合)。
Z0 ={87/(εr+1.41)1/2 }ln{5.98H/(0.8W+T)}
带状线(适合Z0较小的场合)。
Z0 =60ln{4D/[0.67π(0.8W+T) ]}
公式中的D为介质量层厚度。
2.2、微带线的的结构与计算方法
根据信号传输线的不同位置可以形成各种各样的结构及其计算方法(参见《现代印制电路基础》一书第十四章)。
2.3、特性阻抗值Z0的一般设计规则
⑴选用合适的基板(CCL)材料和PCB结构,确定信号传输线的长度等以确定PCB尺寸。
⑵合理的布局与布线,使每组(网络)导线的特性阻抗值Z0与元(组)件的特性阻抗值相匹配。
⑶应考虑基板材料品质的不稳定波动、PCB制造过程的偏差与控制和PCB设计的因素等带来在PCB中特性阻抗值Z0偏差的补救与修正的措施和办法。
3、信号传输线的布设
3.1信号传输线的长度越短越好
根据信号“传输线”的定义,信号线布设得很短,使其长度小于1/7传输信号波长,便可消除传输信号被“反射”信号而削弱问题。或者说,信号线布设,其长度短到小于1/7传输信号波长,则其布设的导线便可按普通线处理。
如何使信号线布设得更短呢!除了高频的元件合理布设外,应在PCB板上的互连结构上下工夫,如采用埋/盲孔、盘内孔(hole in pad)、叠孔和HDI/BUM等结构来缩短走线。
3.2、高密度布线,介质层越薄,串扰越小
介质层越厚,电磁交叉感应越强,串扰越严重!
介质层要薄,必须选择低εr材料。
3.3、采用非平行走线
密集的平行走线将带来更大的电感与电容,从而产生更大的串扰,也是产生杂音的
原因之一。应采用:
⑴相邻的导线层之间互为直角布设;
⑵同一层上采用阶梯式斜向(45度)布设;
⑶通过导通孔的绞线布设。
3.4、采用差分传输线
采用差分传输线可以明显减小传输线的干扰,这在高频和高速数字的信号传输中非常重要。
⑴差分传输线可以明显减小传输线中信号的干扰,提高传输信号的完整性,这是PCB设计者所熟悉的。但是,不同差分传输线减小干扰信号的程度是不同的。为了减小对传输信号的“共模”干扰,采用的差分传输线,主要应做到如下四个 :
(一)形状和长度相同,做到“共模”拐角,即不要使形状和长度不相同而引起“共模”干扰;
(二)由直角改为45度角,实验表明,其“共模”干扰可降低50%;
(三)采用补偿 电容,如在 拐角的短线加一个合适的电容,可降低干扰;
(四)形成双绞方式差分传输线。
⑵双绞差分传输线。采用通孔在不同层之间来形成双绞差分传输线是目前最有效地降低干扰信号的方法。
①有偏位(移)双绞差分传输线。又可称为常规双绞差分传输线。
②没有偏位(移)双绞差分传输线。可获得较好的降低信号干扰。
4、特性阻抗值Z0对基板(CCL)材料的要求
从Z0 ={87/(εr+1.41)1/2 }ln{5.98H/(0.8W+T)}公式中可以看出:影响特性阻抗值Z0的主要因素:
(一)介电常数εr;
(二)介质层厚度H;
(三)信号传输线的宽度W;
(四)信号传输线的厚度。这些表明:特性阻抗值Z0与基板材料是息息相关着。实验也表明,影响特性阻抗值Z0从大到小是9(二)、(三)、(一)、(四)顺序排列的。
4.1介电常数εr对特性阻抗值Z0的影响
⑴介电常数εr影响着信号的传输速度。
信号的传输速度是随着介电常数εr的增加而下降。根据电磁波理论中的马克斯威尔公式,即: Vs=c/(εr)1/2
表1
⑵介电常数εr的大小是复合材料的“加权和”。这就是说,介电常数εr的大小是与介质层的组成、结构(复合组成与结构)有关。如FR-4材料中,由于采用E-玻纤布的结构(如7628、2116、1080、106等)不同,其树脂含量是不同的,因此,其介电常数εr值是不一样的。对于严格控制特性阻抗值Z0来说,PCB设计和制造都应该了解和加以计算,才能获得更精准的控制与结果。
⑶εr值变动的大小比其它因素影响大,位居第三位。介电常数εr对特性阻抗值Z0的影响可以从Z0的公式中看出来:
Z0 ={87/(εr+1.41)1/2 }ln{5.98H/(0.8W+T)}
显然,介电常数εr值越小,Z0值越大,εr值变动的大小影响大,应加以认真控制。
4.2、介质厚度对特性阻抗值Z0的影响
⑴从Z0的公式中可看出,Z0的值是与介质厚度H的自然对数成正比的。
⑵在相同的厚度下,微带线有较大的Z0值。
⑶厚度偏差对Z0值的影响是处于第一位的,因此必须很好控制介质层的厚度。但由于厚度偏差主要是由CCL制造商,其次是PCB制造者(多层压板)来控制的,一般偏差可控制在较小的范围内。
4.3、导线厚度对特性阻抗值Z0的影响
⑴从Z0的公式中可看出,Z0的值是随着导线厚度T的减少而增加着。
⑵在相同的厚度下,微带线有较大的Z0值。
⑶厚度偏差对Z0值的影响是最小的。
4.4、导线宽度对特性阻抗值Z0的影响
⑴从Z0的公式中可看出,Z0的值是随着导线宽度W的下降而增加。
①计算与实验表明,导线宽度W对特性阻抗值Z0的影响是最大的。
②导线宽度W是PCB生产最难控制的,也是最需要进行控制的。
⑵导线宽度偏差控制的意义。
导线宽度偏差控制的意义,在某种程度上是控制了PCB(OEM设计)的特性阻抗值Z0的范围。因为选定CCL材料和完成PCB设计之后,这意味着:
①介电常数εr值、介质厚度H值和导线厚度T值等基本不变,或变动不大;
②导线宽度偏差最大,也最难控制,因为制造过程长、影响多。
③导线较长又是用来传输信号的,导线宽度偏差是影响特性阻抗值Z0的最大因素。
所以,导线宽度偏差值的控制是当今HDI/BUM板的关键技术。
⑶导线宽度偏差的控制。
①导线宽度尺寸的迅速缩小,其控制越难,属于“精细”节距的控制。
②常规的图形转移技术越来越不能满足精细导线的要求了。
③激光直接成像技术是目前最好的制造精细导线的选择。
5、特性阻抗值Z0的测试
5.1、特性阻抗的测试样板
特性阻抗的测试样板可按IEC 61188-1-2规定进行。IPC-D-275(四种电路板传输线),IPC-D-317(高速电路板设计规范中传输线的种类)和IPC-TM-650等也作了规定。
5.2、特性阻抗的测试仪
目前是以英国Polar公司生产的特性阻抗测试仪。它是由时域反射计(TDR)、台式计算机和特制的附有1米长电缆测试探头以及待测的样板(或互连板)等组成。
特性阻抗的测试原理是由时域反射计(TDR)向印制板发射出一个信号电压(高频信号或高速脉冲信号的电压),测量出反射回来的电压变化,然后通过PC计算并输出特性阻抗值Z0来。
计算公式:Z0 =Z参V线/(V参-V线)
5.3、AOI对特性阻抗值的控制
5.4、由于导线制造的完整性(尺寸偏差)在特性阻抗值的控制中的重要性,越来越走向精细化。采用“目检”已经不能胜任,而随着AOI的不断改进与完善,采用AOI技术来控制精细导线已经成为现实,虽然不能完全取代特性阻抗的测试,但是,可以提高PCB的生产率(合格率),进一步达到控制特性阻抗值的目的。