选择特殊符号
选择搜索类型
请输入搜索
焦炉法生产的沥青焦含有较多的球粒状炭,显微结构属于区域型(图1),球粒状炭的存在不利于中间相小球体的长大和变形,因而影响其纤维型显微结构的质量和数量。而延迟焦法生产的沥青焦显微结构属于镶嵌型,与石油焦更相近(图2) 。
由于沥青焦和石油焦的生成机理同属液相炭化,中国多数学者对沥青焦显微结构的划分与石油焦相同,将沥青焦显微结构分为镶嵌型、区域型(粗变形)和纤维型(流线型)3大类和若干小类。
沥青焦炭相(carbon micrographs of pitch coke)是指沥青焦的显微结构。沥青焦坚硬呈铁灰色,气孔较大(最大孔径可达5mm以上),孔壁较厚(1-4mm),壁上有大量的细微裂纹和微孔 。
不
沥青大体分为两类,一类叫煤沥青,一类叫石油沥青,是煤与石油深加工之后的残羹剩饭,但用途很广。 首先,沥青还可以继续深加工,得到沥青纤维,再经碳化制成碳纤维,是优质碳纤维复合材料的重要增强体,但不是最好...
煤焦沥青是炼焦的副产品,即焦油蒸馏后残留在蒸馏釜内的黑色物质。它与精制焦油只是物理性质有分别,没有明显的界限,一般的划分方法是规定软化点在26.7℃(立方块法)以下的为焦油,26.7℃以上的为沥青。煤...
在偏光显微镜下观察焦炉法生产的沥青焦,在某些孔壁的接合处和厚壁的中心部分,有时可观察到尺寸小于5μm的圆球状各向同性结构,而镶嵌状结构也分布在这些地方,在扫描电镜下观察,这些小圆球的形貌为花瓣形结构,其中包括实心花蕾和薄的花瓣,这种花瓣结构决定了其光学各向同性,宏观孔的周围即孔壁的外部主要为区域型和纤维型显微结构,薄的孔壁几乎全是纤维结构 。2100433B
改质沥青及酚渣对配煤焦炭质量的影响
为提高瘦煤和1/2中黏煤在传统炼焦配煤中的比例,研究了在配煤中添加改质沥青及酚渣对焦炭质量的影响,采用不同配比的改质沥青和酚渣分别进行40 kg小焦炉配煤炼焦试验。结果表明:随着配煤中改质沥青配比的增加,焦炭的块度减小、干基全焦率Kd降低、粉焦率增加、灰分Ad降低,而焦炭硫含量的变化趋势不明显;配入质量分数1%的改质沥青时,焦炭的抗碎强度M4 0达到最大,比空白试验提高0.9%,配入质量分数1%~3%的改质沥青时,耐磨强度M10比空白试验低0.2%~0.3%;配入质量分数4%的改质沥青,焦炭的反应性和反应后强度都达到最佳,分别比空白试验降低7.9%和升高15.7%;酚渣的配入大幅降低了焦炭的冷强度,其不适宜作为黏结剂用于配煤炼焦。
煤沥青流变性和煤沥青对炭素骨料焦浸润性的研究
煤沥青流变性和煤沥青对炭素骨料焦浸润性的研究
焦炭灰是多种氧化物的混合物,焦炭灰熔点就是多种氧化物在受热时形成共熔物的熔融温度,它与灰成分中酸性氧化物同碱性氧化物的比值(SiO2 Al2O3)/( Fe2O3 CaO MgO)有密切关系,该比值愈大,则灰熔点愈高通常焦炭灰熔点和煤的灰熔点均以三个特性温度,即变形温度、软化温度和流动温度表示 。
焦炭力学性质是指是用材料力学方法测量和研究焦炭所得的焦炭性质。有焦炭抗压强度、焦炭抗拉强度、风炭显微强度和焦炭杨氏模量等。这些性质与焦炭气孔壁强度、焦炭气孔结构、焦块中的裂纹直接相关。以材料力学方法研究焦炭是20世纪70年代以来才开始的,尚不成熟,但它可以更深入地评定焦炭材料和焦炭多孔体的强度,揭示焦炭性质与结构间的内在关系 。
焦炭物理性质包括焦炭筛分组成、焦炭散密度、焦炭真相对密度、焦炭视相对密度、焦炭气孔率、焦炭比热容、焦炭热导率、焦炭热应力、焦炭着火温度、焦炭热膨胀系数、焦炭收缩率、焦炭电阻率和焦炭透气性等。
焦炭的物理性质与其常温机械强度和热强度及化学性质密切相关。焦炭的主要物理性质如下:
平均比热容为 0.808kj/(kgk)(100℃),1.465kj/(kgk)(1000℃)
热导率为 2.64kj/(mhk)(常温),6.91kj/(mhk)(900℃);
着火温度(空气中)为 450-650℃;
干燥无灰基低热值为 30-32KJ/g;
焦炭反应性与二氧化碳、氧和水蒸气等进行化学反应的能力,CRI =(G0—G1)/G0×100%(注:G0----试验焦炭样重量,g;G1----反应后焦炭样重量,g;)。焦炭反应后强度是指反应后的焦炭再机械力和 热应力作用下抵抗碎裂和磨损的能力。焦炭在高炉炼铁、铸造化铁和固定床气化过程中,都要与二氧化碳、氧和水蒸气发生化学反应。由于焦与氧和水蒸气的反应有与二氧化碳的反应类似的规律,因此大多数国家都用焦炭与 二氧化碳间的反应特性评定焦炭反应性。
焦炭反应性CRI及反应后强度CSR的重复性r不得超过下列数值:
CRIr≤2.4%
CSR:≤3.2%
焦炭反应性及反应后强度的试验结果均取平行试验结果的算术平均值。