选择特殊符号
选择搜索类型
请输入搜索
PWM的一个优点是从处理器到被控系统信号都是数字形式的,无需进行数模转换。让信号保持为数字形式可将噪声影响降到最小。噪声只有在强到足以将逻辑1改变为逻辑0或将逻辑0改变为逻辑1时,也才能对数字信号产生影响。
对噪声抵抗能力的增强是PWM相对于模拟控制的另外一个优点,而且这也是在某些时候将PWM用于通信的主要原因。从模拟信号转向PWM可以极大地延长通信距离。在接收端,通过适当的RC或LC网络可以滤除调制高频方波并将信号还原为模拟形式。总之,PWM既经济、节约空间、抗噪性能强,是一种值得广大工程师在许多设计应用中使用的有效技术。
采样控制理论中有一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。PWM控制技术就是以该结论为理论基础,对半导体开关器件的导通和关断进行控制,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形。按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。
PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现。直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到应用。随着电力电子技术,微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论,非线性系统控制思想的应用,PWM控制技术获得了空前的发展,已出现了多种PWM控制技术,根据PWM控制技术的特点,主要有以下8类方法。
等脉宽PWM法
VVVF(Variable Voltage Variable Frequency)装置在早期是采用PAM(Pulse Amplitude Modulation)控制技术来实现的,其逆变器部分只能输出频率可调的方波电压而不能调压。等脉宽PWM法正是为了克服PAM法的这个缺点发展而来的,是PWM法中最为简单的一种。它是把每一脉冲的宽度均相等的脉冲列作为PWM波,通过改变其周期,达到调频的效果。改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。 相对于PAM法,该方法的优点是简化了电路结构,提高了输入端的功率因数,但同时也存在输出电压中除基波外,还包含较大的谐波分量。
随机PWM
在上世纪70年代开始至上世纪80年代初,由于当时大功率晶体管主要为双极性达林顿三极管,载波频率一般不超过5kHz,电机绕组的电磁噪音及谐波造成的振动引起了人们的关注。为求得改善,随机PWM方法应运而生。其原理是随机改变开关频率使电机电磁噪音近似为限带白噪声(在线性频率坐标系中,各频率能量分布是均匀的),尽管噪音的总分贝数未变,但以固定开关频率为特征的有色噪音强度大大削弱。正因为如此,即使在IGBT已被广泛应用,对于载波频率必须限制在较低频率的场合,随机PWM仍然有其特殊的价值;另一方面则说明了消除机械和电磁噪音的最佳方法不是盲目地提高工作频率,随机PWM技术正是提供了一个分析,解决这种问题的全新思路。
SPWM法
SPWM(Sinusoidal PWM)法是一种比较成熟的,如今使用较广泛的PWM法。前面提到的采样控制理论中的一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同的。 SPWM法就是以该结论为理论基础,用脉冲宽度按正弦规律变化而和正弦波等效的PWM波形即SPWM波形控制逆变电路中开关器件的通断,使其输出的脉冲电压的面积与所希望输出的正弦波在相应区间内的面积相等,通过改变调制波的频率和幅值则可调节逆变电路输出电压的频率和幅值。SPWM是指在调制期间,变频电源的输出幅度相等并且序列脉冲占空比根据正弦函数规律变化的一种调制方法。正弦函数取值越大,对应的脉冲占空比也就越大,相邻的脉冲间隔也就越小。相应的,当正弦函数取值越小时,脉冲占空比也越小,相邻的脉冲间隔也就越大 。该方法的实现有以下几种方案。
等面积法:该方案实际上就是SPWM法原理的直接阐释,用同样数量的等幅而不等宽的矩形脉冲序列代替正弦波,然后计算各脉冲的宽度和间隔,并把这些数据存于微机中,通过查表的方式生成PWM信号控制开关器件的通断,以达到预期的目的。由于此方法是以SPWM控制的基本原理为出发点,可以准确地计算出各开关器件的通断时刻,其所得的的波形很接近正弦波,但其存在计算繁琐,数据占用内存大,不能实时控制的缺点。
硬件调制法:硬件调制法是为解决等面积法计算繁琐的缺点而提出的,其原理就是把所希望的波形作为调制信号,把接受调制的信号作为载波,通过对载波的调制得到所期望的PWM波形。通常采用等腰三角波作为载波,当调制信号波为正弦波时,所得到的就是SPWM波形。其实现方法简单,可以用模拟电路构成三角波载波和正弦调制波发生电路,用比较器来确定它们的交点,在交点时刻对开关器件的通断进行控制,就可以生成SPWM波。但是,这种模拟电路结构复杂,难以实现精确的控制。
软件生成法:由于微机技术的发展使得用软件生成SPWM波形变得比较容易,因此,软件生成法也就应运而生。软件生成法其实就是用软件来实现调制的方法,其有两种基本算法,即自然采样法和规则采样法。
自然采样法:以正弦波为调制波,等腰三角波为载波进行比较,在两个波形的自然交点时刻控制开关器件的通断,这就是自然采样法。其优点是所得SPWM波形最接近正弦波,但由于三角波与正弦波交点有任意性,脉冲中心在一个周期内不等距,从而脉宽表达式是一个超越方程,计算繁琐,难以实时控制。
规则采样法:规则采样法是一种应用较广的工程实用方法,一般采用三角波作为载波。其原理就是用三角波对正弦波进行采样得到阶梯波,再以阶梯波与三角波的交点时刻控制开关器件的通断,从而实现SPWM法。当三角波只在其顶点(或底点)位置对正弦波进行采样时,由阶梯波与三角波的交点所确定的脉宽,在一个载波周期(即采样周期)内的位置是对称的,这种方法称为对称规则采样。当三角波既在其顶点又在底点时刻对正弦波进行采样时,由阶梯波与三角波的交点所确定的脉宽,在一个载波周期(此时为采样周期的两倍)内的位置一般并不对称,这种方法称为非对称规则采样。规则采样法是对自然采样法的改进,其主要优点就是是计算简单,便于在线实时运算,其中非对称规则采样法因阶数多而更接近正弦。其缺点是直流电压利用率较低,线性控制范围较小。以上两种方法均只适用于同步调制方式中。
低次谐波消去法:低次谐波消去法是以消去PWM波形中某些主要的低次谐波为目的的方法。其原理是对输出电压波形按傅氏级数展开,表示为u(ωt)=ansinnωt,首先确定基波分量a1的值,再令两个不同的an=0。就可以建立三个方程,联立求解得a1,a2及a3,这样就可以消去两个频率的谐波。该方法虽然可以很好地消除所指定的低次谐波,但是,剩余未消去的较低次谐波的幅值可能会相当大,而且同样存在计算复杂的缺点。该方法同样只适用于同步调制方式中。
梯形波与三角波比较法:前面所介绍的各种方法主要是以输出波形尽量接近正弦波为目的,从而忽视了直流电压的利用率,如SPWM法,其直流电压利用率仅为86.6%。因此,为了提高直流电压利用率,提出了一种新的方法--梯形波与三角波比较法。该方法是采用梯形波作为调制信号,三角波为载波,且使两波幅值相等,以两波的交点时刻控制开关器件的通断实现PWM控制。由于当梯形波幅值和三角波幅值相等时,其所含的基波分量幅值已超过了三角波幅值,从而可以有效地提高直流电压利用率。但由于梯形波本身含有低次谐波,所以输出波形中含有5次,7次等低次谐波。
线电压控制PWM
前面所介绍的各种PWM控制方法用于三相逆变电路时,都是对三相输出相电压分别进行控制的,使其输出接近正弦波,但是,对于像三相异步电动机这样的三相无中线对称负载,逆变器输出不必追求相电压接近正弦,而可着眼于使线电压趋于正弦。因此,提出了线电压控制PWM,主要有以下两种方法。
马鞍形波与三角波比较法:马鞍形波与三角波比较法也就是谐波注入PWM方式(HIPWM),其原理是在正弦波中加入一定比例的三次谐波,调制信号便呈现出马鞍形,而且幅值明显降低,于是在调制信号的幅值不超过载波幅值的情况下,可以使基波幅值超过三角波幅值,提高了直流电压利用率。在三相无中线系统中,由于三次谐波电流无通路,所以三个线电压和线电流中均不含三次谐波。除了可以注入三次谐波以外,还可以注入其他3倍频于正弦波信号的其他波形,这些信号都不会影响线电压。这是因为,经过PWM调制后逆变电路输出的相电压也必然包含相应的3倍频于正弦波信号的谐波,但在合成线电压时,各相电压中的这些谐波将互相抵消,从而使线电压仍为正弦波。
单元脉宽调制法:因为,三相对称线电压有Uuv Uvw Uwu=0的关系,所以,某一线电压任何时刻都等于另外两个线电压负值之和。如今把一个周期等分为6个区间,每区间60°,对于某一线电压例如Uuv,半个周期两边60°区间用Uuv本身表示,中间60°区间用-(Uvw Uwu)表示,当将Uvw和Uwu作同样处理时,就可以得到三相线电压波形只有半周内两边60°区间的两种波形形状,并且有正有负。把这样的电压波形作为脉宽调制的参考信号,载波仍用三角波,并把各区间的曲线用直线近似(实践表明,这样做引起的误差不大,完全可行),就可以得到线电压的脉冲波形,该波形是完全对称,且规律性很强,负半周是正半周相应脉冲列的反相,因此,只要半个周期两边60°区间的脉冲列一经确定,线电压的调制脉冲波形就唯一地确定。这个脉冲并不是开关器件的驱动脉冲信号,但由于已知三相线电压的脉冲工作模式,就可以确定开关器件的驱动脉冲信号了。该方法不仅能抑制较多的低次谐波,还可减小开关损耗和加宽线性控制区,同时还能带来用微机控制的方便,但该方法只适用于异步电动机,应用范围较小。
电流控制PWM
电流控制PWM的基本思想是把希望输出的电流波形作为指令信号,把实际的电流波形作为反馈信号,通过两者瞬时值的比较来决定各开关器件的通断,使实际输出随指令信号的改变而改变。其实现方案主要有以下3种。
滞环比较法:这是一种带反馈的PWM控制方式,即每相电流反馈回来与电流给定值经滞环比较器,得出相应桥臂开关器件的开关状态,使得实际电流跟踪给定电流的变化。该方法的优点是电路简单,动态性能好,输出电压不含特定频率的谐波分量。其缺点是开关频率不固定造成较为严重的噪音,和其他方法相比,在同一开关频率下输出电流中所含的谐波较多。
三角波比较法:该方法与SPWM法中的三角波比较方式不同,这里是把指令电流与实际输出电流进行比较,求出偏差电流,通过放大器放大后再和三角波进行比较,产生PWM波。此时开关频率一定,因而克服了滞环比较法频率不固定的缺点。但是,这种方式电流响应不如滞环比较法快。
预测电流控制法:预测电流控制是在每个调节周期开始时,根据实际电流误差,负载参数及其它负载变量,来预测电流误差矢量趋势,因此,下一个调节周期由PWM产生的电压矢量必将减小所预测的误差。该方法的优点是,若给调节器除误差外更多的信息,则可获得比较快速,准确的响应。这类调节器的局限性是响应速度及过程模型系数参数的准确性。
空间电压矢量控制PWM
空间电压矢量控制PWM(SVPWM)也叫磁通正弦PWM法。它以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,用逆变器不同的开关模式所产生的实际磁通去逼近基准圆磁通,由它们的比较结果决定逆变器的开关,形成PWM波形。此法从电动机的角度出发,把逆变器和电机看作一个整体,以内切多边形逼近圆的方式进行控制,使电机获得幅值恒定的圆形磁场(正弦磁通)。具体方法又分为磁通开环式和磁通闭环式。磁通开环法用两个非零矢量和一个零矢量合成一个等效的电压矢量,若采样时间足够小,可合成任意电压矢量。此法输出电压比正弦波调制时提高15%,谐波电流有效值之和接近最小。磁通闭环式引入磁通反馈,控制磁通的大小和变化的速度。在比较估算磁通和给定磁通后,根据误差决定产生下一个电压矢量,形成PWM波形。这种方法克服了磁通开环法的不足,解决了电机低速时,定子电阻影响大的问题,减小了电机的脉动和噪音。但由于未引入转矩的调节,系统性能没有得到根本性的改善。
矢量控制PWM
矢量控制也称磁场定向控制,其原理是将异步电动机在三相坐标系下的定子电流Ia,Ib及Ic,通过三相/二相变换,等效成两相静止坐标系下的交流电流Ia1及Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1及It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿对直流电动机的控制方法,实现对交流电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。但是,由于转子磁链难以准确观测,以及矢量变换的复杂性,使得实际控制效果往往难以达到理论分析的效果,这是矢量控制技术在实践上的不足。此外,它必须直接或间接地得到转子磁链在空间上的位置才能实现定子电流解耦控制,在这种矢量控制系统中需要配置转子位置或速度传感器,这显然给许多应用场合带来不便。
直接转矩控制PWM
1985年德国鲁尔大学Depenbrock教授首先提出直接转矩控制理论(Direct Torque Control简称DTC)。直接转矩控制与矢量控制不同,它不是通过控制电流,磁链等量来间接控制转矩,而是把转矩直接作为被控量来控制,它也不需要解耦电机模型,而是在静止的坐标系中计算电机磁通和转矩的实际值,然后,经磁链和转矩的Band-Band控制产生PWM信号对逆变器的开关状态进行最佳控制,从而在很大程度上解决了上述矢量控制的不足,能方便地实现无速度传感器化,有很快的转矩响应速度和很高的速度及转矩控制精度,并以新颖的控制思想,简洁明了的系统结构,优良的动静态性能得到了迅速发展。但直接转矩控制也存在缺点,如逆变器开关频率的提高有限制。
非线性控制PWM
单周控制法[7]又称积分复位控制(Integration Reset Control,简称IRC),是一种新型非线性控制技术,其基本思想是控制开关占空比,在每个周期使开关变量的平均值与控制参考电压相等或成一定比例。该技术同时具有调制和控制的双重性,通过复位开关,积分器,触发电路,比较器达到跟踪指令信号的目的。单周控制器由控制器,比较器,积分器及时钟组成,其中控制器可以是RS触发器。
单周控制在控制电路中不需要误差综合,它能在一个周期内自动消除稳态,瞬态误差,使前一周期的误差不会带到下一周期。虽然硬件电路较复杂,但其克服了传统的PWM控制方法的不足,适用于各种脉宽调制软开关逆变器,具有反应快,开关频率恒定,鲁棒性强等优点,此外,单周控制还能优化系统响应,减小畸变和抑制电源干扰,是一种很有前途的控制方法。
谐振软开关PWM
传统的PWM逆变电路中,电力电子开关器件硬开关的工作方式,大的开关电压电流应力以及高的du/dt和di/dt限制了开关器件工作频率的提高,而高频化是电力电子主要发展趋势之一,它能使变换器体积减小,重量减轻,成本下降,性能提高(特别当开关频率在18kHz以上时),振动减少,使无噪声传动系统成为可能。谐振软开关PWM的基本思想是在常规PWM变换器拓扑的基础上,附加一个谐振网络,谐振网络一般由谐振电感,谐振电容和功率开关组成。开关转换时,谐振网络工作使电力电子器件在开关点上实现软开关过程,谐振过程极短,基本不影响PWM技术的实现。从而既保持了PWM技术的特点,又实现了软开关技术。但由于谐振网络在电路中的存在必然会产生谐振损耗,并使电路受固有问题的影响,从而限制了该方法的应用。
随着电子技术的发展,出现了多种脉冲宽度调制(Pulse width modulation,PWM)技术,其中包括:相电压控制PWM、脉宽PWM法、随机PWM、SPWM法、线电压控制PWM等,而在镍氢电池智能充电器中采用的脉宽PWM法,它是把每一脉冲宽度均相等的脉冲列作为PWM波形,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。可以通过调整PWM的周期、PWM的占空比而达到控制充电电流的目的。
模拟信号的值可以连续变化,其时间和幅度的分辨率都没有限制。9V电池就是一种模拟器件,因为它的输出电压并不精确地等于9V,而是随时间发生变化,并可取任何实数值。与此类似,从电池吸收的电流也不限定在一组可能的取值范围之内。模拟信号与数字信号的区别在于后者的取值通常只能属于预先确定的可能取值集合之内,例如在{0V,5V}这一集合中取值。
模拟电压和电流可直接用来进行控制,如对汽车收音机的音量进行控制。在简单的模拟收音机中,音量旋钮被连接到一个可变电阻。拧动旋钮时,电阻值变大或变小;流经这个电阻的电流也随之增加或减少,从而改变了驱动扬声器的电流值,使音量相应变大或变小。与收音机一样,模拟电路的输出与输入成线性比例。
尽管模拟控制看起来可能直观而简单,但它并不总是非常经济或可行的。其中一点就是,模拟电路容易随时间漂移,因而难以调节。能够解决这个问题的精密模拟电路可能非常庞大、笨重(如老式的家庭立体声设备)和昂贵。模拟电路还有可能严重发热,其功耗相对于工作元件两端电压与电流的乘积成正比。模拟电路还可能对噪声很敏感,任何扰动或噪声都肯定会改变电流值的大小。
通过以数字方式控制模拟电路,可以大幅度降低系统的成本和功耗。此外,许多微控制器和DSP已经在芯片上包含了PWM控制器,这使数字控制的实现变得更加容易了。
通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。
脉冲频率调制(PFM)之所以应用没有脉冲宽度调制(PWM)多最主要的一个原因就是脉冲宽度调制(PWM)控制方法实现起来容易,脉冲频率调制(PFM)控制方法实现起来不太容易。 脉冲频率调制(PFM)相比...
直流电机使用直流电流作为驱动电流。直流电机内部主要由主磁极、绕组线圈、换向片、电刷等部件构成。直流电机的两极输入直流电流,根据安培定律,通电线圈在磁场中受到磁场作用力的影响,可以驱动线圈旋转;对直流电...
简介
脉宽调制PWM是开关型稳压电源中的术语。这是按稳压的控制方式分类的,除了PWM型,还有PFM型和PWM、PFM混合型。脉宽宽度调制式(PWM)开关型稳压电路是在控制电路输出频率不变的情况下,通过电压反馈调整其占空比,从而达到稳定输出电压的目的。
PWM软件法控制充电电流
该方法的基本思想就是利用单片机具有的PWM端口,在不改变PWM方波周期的前提下,通过软件的方法调整单片机的PWM控制寄存器来调整PWM的占空比,从而控制充电电流。该方法所要求的单片机必须具有ADC端口和PWM端口这两个必须条件,另外ADC的位数尽量高,单片机的工作速度尽量快。在调整充电电流前,单片机先快速读取充电电流的大小,然后把设定的充电电流与实际读取到的充电电流进行比较,若实际电流偏小则向增加充电电流的方向调整PWM的占空比;若实际电流偏大则向减小充电电流的方向调整PWM的占空比。在软件PWM的调整过程中要注意ADC的读数偏差和电源工作电压等引入的纹波干扰,合理采用算术平均法等数字滤波技术。
PWM在推力调制中的应用
1962年,Nicklas等提出了脉冲调制理论,指出利用喷气脉冲对航天器控制是简单有效的控制方案,同时能使时间或能量达到最优控制。
脉宽调制发动机控制方式是在每一个脉动周期内,通过改变阀门在开或关位置上停留的时间来改变流经阀门的气体流量,从而改变总的推力效果,对于质量流率不变的系统,可以通过脉宽调制技术来获得变推力的效果。
脉宽调制通常有两种方法[15]:第一种为整体脉宽调制,对控制对象进行控制器设计,并根据控制要求的作用力大小,对整个系统模型进行动态的数学解算变换,得出固定力输出应该持续作用的时间和开始作用时间;第二种为脉宽调制器,不考虑控制对象模型,而是根据输入进行"动态衰减"性的累加,然后经过某种算法变换后,决定输出所持续的时间。这种方式非常简单,也能达到输出作用近似相同。
脉宽调制控制技术结构简单、易于实现、技术比较成熟,俄罗斯已经将其成功地应用于远程火箭的角度稳定系统控制中。但是当调制量为零时,正反向的控制作用相互抵消,控制效率明显比变流率系统低。而且系统响应有一定的滞后,其开关的频率必须远大于KKV本身的固有频率,否则不但起不到调制效果,甚至会发生灾难性后果。
在LED中的应用
在LED控制中PWM作用于电源部分,脉宽调制的脉冲频率通常大于100Hz,人眼就不会感到闪烁。
脉冲宽度调制相关专业术语:
1. | modulation, pulse width (PWM) 脉冲宽度调制 |
2. | pulse-width modulation (PWM) 脉冲宽度调制 |
脉冲宽度调制(PWM)是一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。只要带宽足够,任何模拟值都可以使用PWM进行编码。
多数负载(无论是电感性负载还是电容性负载)需要的调制频率高于10Hz,通常调制频率为1kHz到200kHz之间。许多微控制器内部都包含有PWM控制器。例如,Microchip公司的PIC16C67内含两个PWM控制器,每一个都可以选择接通时间和周期。占空比是接通时间与周期之比;调制频率为周期的倒数。执行PWM操作之前,这种微处理器要求在软件中完成以下工作:
1、设置提供调制方波的片上定时器/计数器的周期
2、 在PWM控制寄存器中设置接通时间
3、设置PWM输出的方向,这个输出是一个通用I/O管脚
4、启动定时器
5、使能PWM控制器
如今几乎所有市售的单片机都有PWM模块功能,若没有(如早期的8051),也可以利用定时器及GPIO口来实现。更为一般的PWM模块控制流程为(笔者使用过TI的2000系列,AVR的Mega系列,TI的LM系列):
1、使能相关的模块(PWM模块以及对应管脚的GPIO模块)。
2、配置PWM模块的功能,具体有:
①:设置PWM定时器周期,该参数决定PWM波形的频率。
②:设置PWM定时器比较值,该参数决定PWM波形的占空比。
③:设置死区(deadband),为避免桥臂的直通需要设置死区,一般较高档的单片机都有该功能。
④:设置故障处理情况,一般为故障是封锁输出,防止过流损坏功率管,故障一般有比较器或ADC或GPIO检测。
⑤:设定同步功能,该功能在多桥臂,即多PWM模块协调工作时尤为重要。
3、设置相应的中断,编写ISR,一般用于电压电流采样,计算下一个周期的占空比,更改占空比,这部分也会有PI控制的功能。
4、使能PWM波形发生。
假设SPWM波的载波频率为fc,基波频率为fs,fc/fs称为载波比N,对于三相变频器,当N为3的整数倍时,输出不含3次谐波及3的整数倍谐波。且谐波集中载波频率整数倍附近,即谐波次数为:kfc±mfs,k和m为整数。
图2是基波频率fs=50Hz,载波频率fc=3kHz,调制比为0.8的SPWM的波形及频谱的Matlab仿真图。
图2中58次谐波和60次谐波的幅值分别为27.8%和27.7%,含量最大的谐波为119次和121次谐波,谐波幅值分别为39.1%和39.3%。即最大谐波在两倍载波频率附近。
随着谐波频率的升高,谐波幅值整体呈现下降趋势,按照GB/T22670变频器供电三相笼型感应电动机试验方法的规定,变频电量变送器的带宽应该在载波频率的6倍以上,当载波频率为3kHz时,带宽至少为18kHz,实际使用建议采用30kHz以上带宽的变频功率传感器及变频功率分析仪。
实际的SPWM波,其载波比不一定为整数,此时,为了降低频谱泄露,可适当增加傅里叶窗口长度,对多个基波周期的PWM进行傅里叶变换(FFT或DFT)。
从调制脉冲的极性看,PWM又可分为单极性与双极性控制模式两种 。产生单极性PWM模式的基本原理如图6.2所示。首先由同极性的三角波载波信号ut。与调制信号ur,比较(图6.2中(a)),产生单极性的PWM脉冲(图6.2中(b));然后将单极性的PWM脉冲信号与图6.2中(c)所示的倒相信号UI相乘,从而得到正负半波对称的PWM脉冲信号Ud,如图6.2中(d)所示。
双极性PWM控制模式采用的是正负交变的双极性三角载波ut与调制波ur,如图6.3所示,可通过ut与ur,的比较直接得到双极性的PWM脉冲,而不需要倒相电路。
除以上两种从原理不同的角度,对调制方法进行的分类外,近些年采用芯片直接进行脉宽调制的方式被更多的用户所接受。信号调理领域经常需要面对模拟量信号的传输、采集、控制等问题,传统的信号链电路包括模数转换器(ADC)、数模转换器(DAC)、运算放大器(OpAmp)、比较器(Comparator)等等,它们扮演着模拟信号处理的主要角色。信号链芯片的功能基础而强大,经过精心的设计后能形成多种多样优秀的信号处理电路,但即便如此,在很多应用领域,依然存在瓶颈和制约,无法达到理想的电路性能和指标。所以在信号链领域渴望出现更多创新的模拟电路处理技术和芯片产品。一种新型的模拟信号处理专用芯片,它实现了模拟信号向PWM信号高精度转换功能,我们称它为APC(Analogue to PWM Convertor)。
脉宽调制(PWM)基本原理:控制方式就是对逆变电路开关器件的通断进行控制,使输出端得到一系列幅值相等但宽度不一致的脉冲,用这些脉冲来代替正弦波或所需要的波形。也就是在输出波形的半个周期中产生多个脉冲,使各脉冲的等值电压为正弦波形,所获得的输出平滑且低次谐波少。按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率 。
例如,把正弦半波波形分成N等份,就可把正弦半波看成由N个彼此相连的脉冲所组成的波形。这些脉冲宽度相等,都等于 π/n ,但幅值不等,且脉冲顶部不是水平直线,而是曲线,各脉冲的幅值按正弦规律变化。如果把上述脉冲序列用同样数量的等幅而不等宽的矩形脉冲序列代替,使矩形脉冲的中点和相应正弦等分的中点重合,且使矩形脉冲和相应正弦部分面积(即冲量)相等,就得到一组脉冲序列,这就是PWM波形。可以看出,各脉冲宽度是按正弦规律变化的。根据冲量相等效果相同的原理,PWM波形和正弦半波是等效的。对于正弦的负半周,也可以用同样的方法得到PWM波形。
在PWM波形中,各脉冲的幅值是相等的,要改变等效输出正弦波的幅值时,只要按同一比例系数改变各脉冲的宽度即可,因此在交-直-交变频器中,PWM逆变电路输出的脉冲电压就是直流侧电压的幅值。
根据上述原理,在给出了正弦波频率,幅值和半个周期内的脉冲数后,PWM波形各脉冲的宽度和间隔就可以准确计算出来。按照计算结果控制电路中各开关器件的通断,就可以得到所需要的PWM波形。图1为变频器输出的PWM波的实时波形。
随着电子技术的发展,出现了多种PWM技术,其中包括:相电压控制PWM、脉宽PWM法、随机PWM、SPWM法、线电压控制PWM等,而在镍氢电池智能充电器中采用的脉宽PWM法,它是把每一脉冲宽度均相等的脉冲列作为PWM波形,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。可以通过调整PWM的周期、PWM的占空比而达到控制充电电流的目的。
模拟信号的值可以连续变化,其时间和幅度的分辨率都没有限制。9V电池就是一种模拟器件,因为它的输出电压并不精确地等于9V,而是随时间发生变化,并可取任何实数值。与此类似,从电池吸收的电流也不限定在一组可能的取值范围之内。模拟信号与数字信号的区别在于后者的取值通常只能属于预先确定的可能取值集合之内,例如在{0V,5V}这一集合中取值。
模拟电压和电流可直接用来进行控制,如对汽车收音机的音量进行控制。在简单的模拟收音机中,音量旋钮被连接到一个可变电阻。拧动旋钮时,电阻值变大或变小;流经这个电阻的电流也随之增加或减少,从而改变了驱动扬声器的电流值,使音量相应变大或变小。与收音机一样,模拟电路的输出与输入成线性比例。
尽管模拟控制看起来可能直观而简单,但它并不总是非常经济或可行的。其中一点就是,模拟电路容易随时间漂移,因而难以调节。能够解决这个问题的精密模拟电路可能非常庞大、笨重(如老式的家庭立体声设备)和昂贵。模拟电路还有可能严重发热,其功耗相对于工作元件两端电压与电流的乘积成正比。模拟电路还可能对噪声很敏感,任何扰动或噪声都肯定会改变电流值的大小。
通过以数字方式控制模拟电路,可以大幅度降低系统的成本和功耗。此外,许多微控制器和DSP已经在芯片上包含了PWM控制器,这使数字控制的实现变得更加容易了。
伺服
脉冲宽度调制可以用于控制伺服机构。
电信
在电信使用上,脉冲宽度调制是一种信号调制的形式,其脉冲波的宽度对应到另一个特定资料会在传送端被编码,并于接收端解码。 不同长度的脉冲波(要传递的讯息本身)将会每隔固定的时间后被传递(载波的频率)。
能量的传递
脉冲宽度调制可以被用来控制对于一个载流子能量传递的多少,而不会产生由阻抗所造成的线性能量传递损失。此方法所需要付出的代价是,载流子所流失的能量并非一个常数且是不连续的(如降压式变换器),载流子上传递的能量也不是连续的。然而,由于载流子可能是具有高频电感性的,这时就必须要外加一个被动的电子滤波器,让这些脉冲波变为平滑且能复原平均的模拟波型,能量流入载流子才会是连续的。而从供应端流出的能量则不是连续的,因此大部分情况下需要额外的能量储存空间。2100433B
脉冲宽度调制式直流电焊机
脉冲宽度调制式直流电焊机
采用模糊控制和脉冲宽度调制技术的同步真空开关位置伺服控制器设计
为保证真空开关动作时间长期稳定性,针对同步真空开关性能受开关动作时间分散性的影响,采用了位置伺服控制使真空开关动触头实现预定的最佳参考轨迹运动。在分析控制电压、环境温度、闲置时间等因素对永磁机构真空开关运动及操作时间影响的基础上,给出了同步真空开关位置伺服控制原理;设计了基于模糊控制和脉冲宽度调制(PWM)技术的同步真空开关位置伺服控制器,并对35kV同步真空开关进行了伺服控制性能测试。测试结果表明,真空开关动触头能很好地跟踪参考轨迹运动,开关合分闸时间分散性在±0.2ms范围内,满足IEC62271-302标准对开关操作时间一致性的要求。
Diodes公司 (Diodes Incorporated) 新推出电流模式脉冲宽度调制 (PWM) 控制器AP3127/H特别为消费性便携式产品,如智能手机充电器和笔记本型电脑的电源适配器而优化,提供了一个高性能低成本的解决方案。其它在消费性电子及通信市场中的应用包括:机顶盒、游戏机、调制解调器以及网络器材。
在正常操作下,AP3127及AP3127H控制器的PWM开关频率分别由内部固定为65kHz和100kHz。然而,在中等负载情况下器件将进入节能模式,并以频率折返来减低开关频率,从而提升系统效率。不过最低开关频率仍然维持在20kHz以确保消除任何可听噪声。在无载或轻载情况下,这些集成电路就通过突冲模式把备用功率降到最低,而其内置的频率抖动功能则可减少电磁干扰的散发。
与采用相同引脚的竞争产品相比,AP3127/H除了藉由较高的平均效率提供超卓的功率控制外,还包含一系列完备的保护功能以确保稳定、强大和可靠的操作。这涵盖多种过载与错误情况,例如过流、二次侧过压 (SOVP) 、内部过温 (OTP) 、并配备可在输出电缆发生短路时保护电源的二次侧欠压保护 (SUVP) 。
AP3127/H脉冲宽度调制控制器采用标准SOT26封装,并以一千个为出货批量。
本文主要对pwm脉冲宽度调制led驱动控制电路图进行了分析说明。
本文引用地址:http://www.eepw.com.cn/article/201605/291314.htm1、开机输入浪涌电流限制电阻;
2、为一款逐流无源功率因数校正(PPFC)电路,通过扩展交流输入市电整流二极管的导通角来改善电路的功率因数,较有源功率因数校正电路(APFC)具有造价低的优点;
3、滤波电容,当整流交流输入接近零交越时,存储电容C3存储的能量为IC供电,该IC为一款高压供电IC;
4、振荡控制。连接这支引脚与地的电阻将设定PWM频率。IC可以通过将ROSC引脚连接到外部MOSFET栅极与外部振荡电阻之间,切换至恒定关断时间 (PFM)工作模式;
5、LED灯串和外部MOSFET开关管Q1电流检测电阻。如电流检测电阻RSENSE上的电压超过电流感测引脚CS的阈值电压,外部MOSFET开关管 Q1关闭。存储在电感器里的电能将使电流继续通过续流二极管D1为负载LED供电;
6、BUCK变换功率开关管Q1,交流市电整流输出直流电压通过负载、电感L1、BUCK变换功率开关管Q1`和电流检测电阻RSENSE到地,形成回 路。一旦BUCK变换功率开关管Q1关断,存储在BUCK电感中的磁能通过续流二极管D1、负载形成灰路,继续为负载供电;
7、BUCK电感,在BUCK变换功率开关管Q1导通时,交流市电整流输出直流电压通过负载和BUCK电感形成回路,为BUCK电感存储能量,一旦BUCK变换功率开关管Q1关断,BUCK电感存储的能量即需为负载供电;
8、输出滤波电容,稳定负载上的供电电压;
9、续流二极管D1,一旦BUCK变换功率开关管关断,BUCK电感存储的能量通过负载和D1形成回路,为负载继续供电。
脉冲频率调制(PFM)之所以应用没有脉冲宽度调制(PWM)多最主要的一个原因就是脉冲宽度调制(PWM)控制方法实现起来容易,脉冲频率调制(PFM)控制方法实现起来不太容易。
脉冲频率调制优点
脉冲频率调制(PFM)相比较脉冲宽度调制(PWM)主要优点在于效率:
1、对于外围电路一样的脉冲频率调制(PFM)和脉冲宽度调制(PWM)而言,其峰值效率PFM与PWM相当,但在峰值效率以前,脉冲频率调制(PFM)的效率远远高于脉冲宽度调制(PWM)的效率,这是脉冲频率调制(PFM)的主要优势。
2、脉冲宽度调制(PWM)由于误差放大器的影响,回路增益及响应速度受到限制,脉冲频率调制(PFM)具有较快的响应速度。
脉冲频率调制缺点
脉冲频率调制(PFM)相比较脉冲宽度调制(PWM)主要缺点在于滤波困难
1、滤波困难(谐波频谱太宽)。
2、峰值效率以前,脉冲频率调制(PFM)的频率低于脉冲宽度调制(PWM)的频率,会造成输出纹波比脉冲宽度调制(PWM)偏大。
3、脉冲频率调制(PFM)控制相比脉冲宽度调制(PWM)控制 IC 价格要贵。