选择特殊符号
选择搜索类型
请输入搜索
科学家们主要通过细胞编程技术改变某些转录因子的浓度,将干细胞变成特定的细胞。新传感器能监测转录因子的活动,因此可确保干细胞被正确地重新编程。它也能确定病人癌细胞中的哪个转录因子被激活,哪个被抑制,以便医生对症下药。因为其能直接在生物样本体内工作,因此,它也能用于筛选和测试抑制肿瘤的新药。
科学家们无需花费数小时将蛋白质从细胞中提取出来,只需将传感器直接放入细胞中,测量荧光强度即可。这种传感器可用来监测数千个转录因子的活动,以帮助科学家们更好地理解细胞分裂和发育机制。
新技术的基础是科学家们对细胞内天然生物传感器的研究成果。参与研究的罗马第三大学的弗朗西斯科-里奇表示,探测转录因子活动的所有信息已被编入基因组中,而且当处于受激状态时,这数千个不同的转录因子会依附于特定的目标DNA序列中,因此,可使用这些序列作为起始点来构建新的纳米传感器。
从细菌到人,所有生物都使用“生物分子开关”(由RNA或蛋白制成、可改变形状的分子)来监测环境。这些“分子开关”的诱人之处在于:它们很小,足以在细胞内“办公”,而且非常有针对性,足以应付非常复杂的环境。
该研究团队受到这些天然纳米传感器的启发,用DNA而非蛋白质或RNA合成出了新的纳米传感器。他们将三种天然DNA序列(每种能识别出不同的转录因子)进行了调整,将其编入分子开关中,当这些DNA序列与其目标结合时,这些分子开关就会变成荧光。科学家们能用这样的纳米传感器,通过简单测量荧光强度来直接确定细胞内转录因子的活动。
纳米技术和生物技术是21世纪的两大领先技术,在这两者之间存在着许多技术交叉,其中,纳米生物传感技术将有望成为新兴产业。自从1967年第一支葡萄糖传感器诞生以来,生物传感技术已成为一前沿技术,它是一个由生物、化学、医学、物理、电子技术等多种学科相互渗透形成的研究领域。生物传感器具有选择性高、分析速度快、操作简易和仪器价格低廉等特点,而且可进行在线甚至活体分析,在临床诊断、环境监测、食品工业等方面得到了高度重视和广泛应用。
纳米技术主要是针对尺度为1nm~100nm之间的分子世界的一门技术。该尺寸处在原子、分子为代表的微观世界和宏观物体交界的过渡区域,基于此尺寸的系统既非典型的微观系统亦非典型的宏观系统,因此有着独特的化学性质和物理性质,如表面效应、微尺寸效应、量子效应和宏观量子隧道效应等,呈现出常规材料不具备的优越性能。
传感器在新技术领域中的应用:传感器是新技术革命和信息社会的重要技术基础,是当今世界极其重要的高科技,一切现代化仪器、设备几乎都离不开传感器。1.光纤传感器:近几年,光纤传感器的发展异常迅速,显现出巨大...
数字式温湿度传感器SHT1x是一款可回流焊传感器。SHT1x系列包含低成本版本SHT10、标准版本SHT11和高端版本SHT15。所有SHTxx系列的Sensirion传感器型号均经过完全校准,并提供...
SHT1x温湿度传感器具有精度高、稳定度好、一致性好、体积小、数字输出等特点,非常适合于对温度和湿度进行监控。可采用SHT1X集成温湿度传感器作为温度与湿度检测,并应用于凝血因子的生物医学检测。也适合...
流量传感器应用
物信学院开放性实验结题报告 总课题 直流漏电流监测装置 设计题目 MSP430单片机测流量 专业班级 测控 班号 B08072021 项目成员姓名 张文焱,胡聪 起止日期 2011 年 3月 1日~2011年 6月 20日 指导教师 徐天奇﹑谭翠兰﹑何立言﹑罗会容 2011-6-10 MSP430单片机测流量 摘要:本文讨论用单片机测量压力完成流量测量。 这种流量传感 器主要由特制的导流管和现有压力传感器组成, 其基本原理是输入 口与输出口这间的压力差与通过导液管的流速直接相关, 用压力传感 器测量导液管入口与出口之间的压力差,并将其转换成电压量输出。 通过检测导液管两端的压力差,即可计算出通过导游管的流速和流 量。这种流量传感器主要有结构简单、灵敏度高、精确度高、量程范 围宽、成本低等优点。 关键词:差压流量计,差压传感器,液体流量检测 1. 引言 流量的测量与控制在各个领
锥型光纤耦合器在生物传感器中的应用
日本横滨住友电工的研究人员发明了一种锥型光纤光学生物传感器,这种传感器具有简单、廉价、灵敏度高的优点。它所采用的锥型光纤传感头与电信方面使用的熔融拉锥型光纤耦合器几
按照其感受器中所采用的生命物质分类,可分为:微生物传感器、免疫传感器、组织传感器、细胞传感器、酶传感器、DNA传感器等。按照传感器器件检测的原理分类 ,可分为:热敏生物传感器、场效应管生物传感器、压电生物传感器、光学生物传感器、声波道生物传感器、酶电极生物传感器、介体生物传感器等。按照生物敏感物质相互作用的类型分类,可分为亲和型和代谢型两种。 解读词条背后的知识 查看全部
生物传感器按是否使用标记物分为两类:一类是标记型生物传感器,检测时先用荧光素、放射性同位素或酶等标记物对被测生物进行标记,然后通过检测标记物的信号来获取被探测物的信息。目前使用的免疫传感器大多数属于这一类,然而利用放射性标记物检测,对于工作人员具有一定的危害,用荧光检测时非特异性荧光也会影响测量结果。标记型生物传感器所用的测试仪器体积大、价格昂贵、耗时,需要专业人员完成,并且指示剂价格昂贵,要集合几十个样本同时测量,让患者在等待中承受巨大的痛苦。另一类是免标记型生物传感器,不需要对探测物进行标记,而是直接通过生物复合物形成时的物理、化学变化对生物对象进行检测,极大地简化了操作过程,因此免标记生物传感器成为了生物传感器的一个重要研究方向 。
免标记生物传感器按照工作原理不同分为:表面等离子体谐振腔生物传感器、光学谐振腔生物传感器、光子晶体生物传感器和光纤生物传感器等。免标记光纤生物传感器是免标记生物传感器家族中的重要一员,是光纤技术与生物技术结合的产物。由于光纤传感器具有灵敏度高、结构简单、不易受电磁干扰等其它器件所不具备的优点,而免标记的生物检测方法又可以将生物化学反应直接转变为可测信号,不需要加入标记物,测试过程简单直接,因此免标记光纤传感器已经成为生物传感器研究的重要方向 。
根据敏感元件不同,光纤生物传感器可大致分为免疫传感器、酶生物传感器和核酸传感器等,现分别作详细介绍 。
1光纤免疫传感器
这是目前研究与应用较多的光纤生物传感器。光纤探头多位于轴向近端面,须去除保护层和包层,裸露纤芯,再对纤芯进行硅烷化处理,然后抗体藉助双功能交叉联结剂共价连接在硅烷化纤芯表面C抗体的固定方式是影响传感器检测灵敏度的重要因素 。
2光纤酶生物传感器
光纤酶生物传感器用酶作分子识别器,与光纤结合起来,对测试物进行分析,常用的酶有氧化还原酶(如乳酸脱氢酶、葡萄糖氧化酶等)和水解酶(如碱性磷酸酶、乙酞胆碱酶等)。根据换能器的能量转换方式可分为化学发光型、荧光型、生物发光型、光吸收型、指示剂型等 。