选择特殊符号

选择搜索类型

热门搜索

首页 > 百科 > 建设工程百科

泥页岩分布对比

泥页岩分布对比

泥页岩比表面大,孔隙小,结构复杂,易吸水膨胀,一般方法很难准确描述其孔径分布情况。对泥页岩孔径分布的研究在石油钻井,完井,储层描述,泥页岩盖层封闭性等方面有着重要的意义。实验分别使用3H-2000系列,ASAP2460系列氮气吸附法和压汞法对同一泥页岩进行孔径分析。3H-2000系列,ASAP2460系列氮气吸附法中使用BJH原理分析泥页岩的中孔径,使用DA原理分析泥页岩的微孔径;压汞法中使用Wasburn公式分析泥页岩整体孔隙,对两种方法实验结果进行对比。氮气吸附法在泥页岩微孔和中孔分析方面有优势,能分别对泥页岩的微孔和中孔进行详细的描述;而压汞法受泥页岩孔径分布不均一性影响相对较小,能弥补氮气吸附法在大孔分析方面的不足。把3H-2000系列,ASAP2460系列,SSA-7000系列氮气吸附法和压汞法测得的孔径分布结果结合使用,可以得到泥页岩从微孔到大孔的孔径分布情况。

泥页岩氮气吸附法

氮气吸附法 3H-2000系列,ASAP2460系列能够有效的客服泥页岩大比表面和小孔径的困难,针对其微裂缝和层状微孔隙的孔隙特征,运用DA原理计算微孔分布,BJH计算中孔分布,能较为准确的反映出泥页岩微孔---中孔的分布情况。压汞法能弥补氮气吸附法的不足,对泥页岩的大孔进行分析,把氮气吸附法与压汞法结合使用,能够详细的描述泥页岩从微孔到大孔的分布情况。

泥页岩压汞法

泥页岩是一种重要的沉积岩,对其研究在石油勘探开发中具有举足轻重的作用。泥页岩比面积大,孔隙小,结构复杂,是重要的生油岩石,也是重要的盖层岩石,在一些泥岩裂隙油气藏中还可作储集层。其微孔隙在生油岩中是油气初次运移重要通道。盖层中微孔隙含量对盖层的封闭性起着重要.在工程领域,由于泥页岩地层的吸水渗透性,钻井和完井的过程中,会引起地层坍塌,造成钻井事故,甚至井眼报废。即使采用欠平衡钻井,也会出现同样的问题。要解决这些问题,就需要了解泥页岩中孔径分布这个最基础的参数。广泛使用压汞法来进行测试,但是由于压汞法要求的圆柱体模型与泥页岩的层状孔隙相差甚远,且受技术水平的限制,其对泥页岩中微孔和中孔的分析精确度不高。而MFA-140系列、SSA-7000系列、3H-2000系列氮气吸附法能很详细的测试出泥页岩中微孔径和中孔径的分布情况。孔径范围定义:大于50nm为大孔,2-50nm为中孔,小于2nm的为微孔。2100433B

查看详情

泥页岩造价信息

  • 市场价
  • 信息价
  • 询价

页岩保护层

  • 品种:防水材料;用途:用在防水卷材表层;规格:50kg/袋;颜色:绿色、灰色、红色
  • t
  • 科顺
  • 13%
  • 四川科顺防水工程有限公司
  • 2022-12-08
查看价格

黄木纹页岩

  • 500×500×20
  • m2
  • 13%
  • 佛山市大卫雕塑集团有限公司
  • 2022-12-08
查看价格

页岩保护层

  • 品种:防水材料;用途:用在防水卷材表层;规格:50kg/袋;颜色:绿色、灰色、红色
  • t
  • 科顺
  • 13%
  • 舟山市润浩防水工程有限公司
  • 2022-12-08
查看价格

页岩保护层

  • 品种:防水材料;用途:用在防水卷材表层;规格:50kg/袋;颜色:绿色、灰色、红色
  • t
  • 科顺
  • 13%
  • 科顺防水科技股份有限公司西安办事处
  • 2022-12-08
查看价格

黄木纹页岩

  • 400×200×15
  • 煌发
  • 13%
  • 深圳市煌发石材集团公司
  • 2022-12-08
查看价格

  • 50T
  • 台班
  • 深圳市2005年7月信息价
  • 建筑工程
查看价格

  • 100T
  • 深圳市2005年7月信息价
  • 建筑工程
查看价格

  • 100T
  • 台班
  • 深圳市2005年7月信息价
  • 建筑工程
查看价格

  • 50T
  • 深圳市2005年7月信息价
  • 建筑工程
查看价格

搅拌水桩机

  • 台班
  • 汕头市2011年3季度信息价
  • 建筑工程
查看价格

绿页岩

  • 绿页岩
  • 200m²
  • 1
  • 不含税费 | 不含运费
  • 2012-05-04
查看价格

人证对比系统前端

  • 认证方式:双证对比;
  • 5套
  • 2
  • 中高档
  • 不含税费 | 含运费
  • 2020-03-30
查看价格

页岩实心砖

  • 页岩实心砖
  • 1千块
  • 1
  • 普通
  • 含税费 | 含运费
  • 2016-03-15
查看价格

页岩实心砖

  • 页岩实心砖
  • 500m³
  • 2
  • 中档
  • 含税费 | 含运费
  • 2020-05-07
查看价格

页岩空心砌块

  • 页岩空心砌块390×115×190
  • 80000块
  • 1
  • 中档
  • 含税费 | 含运费
  • 2013-06-13
查看价格

泥页岩类型介绍

泥页岩属于泥岩和页岩之间的过渡岩石类型,可见发育不完善的页理,一般是浅湖到深湖沉积的产物,是阻止油气逸散的良好盖层。

查看详情

泥页岩分布对比常见问题

查看详情

泥页岩分布对比文献

页岩核磁共振孔径分布测试报告模板 页岩核磁共振孔径分布测试报告模板

页岩核磁共振孔径分布测试报告模板

格式:pdf

大小:607KB

页数: 4页

页岩核磁共振孔径分布测试报告模板

用于水泥生产的页岩 用于水泥生产的页岩

用于水泥生产的页岩

格式:pdf

大小:607KB

页数: 2页

1页岩的分类页岩是一种沉积岩,成分比较复杂,除含粘土矿物(如高岭石、蒙脱石、水云母、拜来石等)外,还含有许多碎屑矿物(如石英、长石、云母等)和自生矿物(如铁、铝、锰的氧化物与氢氧化物等),具有页状或薄片状层理,用硬物击打易裂成碎片,常见类型有:(1)黑色页岩,含有较多的有

页岩标砖页岩的结构

页岩是由粘土在地壳运动中挤压而形成的岩石。由于它层理分明、易剥离而称为页岩。页岩一般为褐色、灰色或黑色,硬度不高,易破碎,容易加工成理想的制砖原料。页岩以其对硅、钙、碳的含量不同而分为硅质页岩、钙质页岩和碳质页岩。其中以硅质页岩变形小、吸湿性小、砖不易风化和产品质量易保证等优点更适于生产页岩砖使用。页岩与粘土有着相似的化学成分,硅、钙、铝、铁化合物占总成分80%以上。

主要品种有实心砖和多孔砖。在生产实际中要解决的主要技术问题是:

(1)根据页岩的化学成分确定是否可以直接作为烧制原料。

(2)根据页岩原料的塑性指数确定砖机工作压力和成型水份。

查看详情

页岩分类

页岩,成分复杂 ,但都具有薄页状或薄片层状的节理,但其中混杂有石英、长石的碎屑以及其他化学物质,根据其混入物的成分,可分为:

钙质页岩、铁质页岩、硅质页岩、炭质页岩、黑色页岩、油母页岩等其中铁质页岩可能成为铁矿石,油母页岩可以提炼石油,黑色页岩可以作为石油的指示地层。

页岩形成于静水的环境中,泥沙经过长时间的沉积,所以经常存在于湖泊、河流三角洲地带,在海洋大陆架中也有页岩的形成,页岩中也经常包含有古代动植物的化石。有时也有动物的足迹化石,甚至古代雨滴的痕迹都可能在页岩中保存下来。

查看详情

页岩气页岩气形成

页岩气形成原因

前人对美国5大页岩气盆地页岩气的成因研究表明,页岩气可以通过以下2种途径演变而来。

1、热裂解成因气(自然生成)

页岩中热成因气的形成有3个途径(如图):①干酪根分解成气体和沥青;②沥青分解成油和气体(步骤1和步骤2为初次裂解);③油分解成气体、高含碳量的焦炭或者沥青残余物(二次裂解)。最后一个步骤主要取决于系统中油的残余量和储层的吸附作用。德克萨斯州的Fort Worth盆地的Barnett页岩气就是通过来源于干酪根热降解和残余油的二次裂解,主要以残余油的二次裂解为主,正因为如此,使得Barnett页岩气具有较大资源潜力。

页岩气是从页岩层中开采出来的天然气,主体位于暗色泥页岩或高碳泥页岩中,页岩气是主体上以吸附或游离状态存在于泥岩、高碳泥岩、页岩及粉砂质岩类夹层中的天然气,它可以生成于有机成因的各种阶段天然气主体上以游离相态(大约50%)存在于裂缝、孔隙及其它储集空间,以吸附状态(大约50%)存在于干酪根、粘土颗粒及孔隙表面,极少量以溶解状态储存于干酪根、沥青质及石油中。天然气也存在于夹层状的粉砂岩、粉砂质泥岩、泥质粉砂岩、甚至砂岩地层中。天然气生成之后,在源岩层内的就近聚集,表现为典型的原地成藏模式,与油页岩、油砂、地沥青等差别较大。与常规储层气藏不同,页岩既是天然气生成的源岩,也是聚集和保存天然气的储层和盖层。因此,有机质含量高的黑色页岩、高碳泥岩等常是最好的页岩气发育条件。

2、生物成因气

一般指页岩在成岩的生物化学阶段直接由细菌降解而成的气体,也有气藏经后期改造而成的生物气。如美国密歇根盆地的Antrim页岩气是干酪根成熟过程中所产生的热降解气和产甲烷菌新陈代谢活动中所产生的生物成因气,以后者为主。其原因可能是发育良好的裂缝系统不仅使天然气和携带大量细菌的原始地层水进入Antrim页岩内,而且来自上覆更新统冰川漂移物中含水层的大气降水也同时侵入,有利于细菌甲烷的形成。

页岩气形成条件

1、沉积环境

较快的沉积条件和封闭性较好的还原环境是黑色页岩形成的重要条件。沉积速率较快可以使得富含有机质页岩在被氧化破坏之前能够大量沉积下来,而水体缺氧可以抑制微生物的活动性,减小其对有机质的破坏作用。如Fort Worth盆地Barnett组富有机质黑色页岩沉积于深水(120~215米)前陆盆地,具有低于风暴浪基面和低氧带(OMZ)的缺氧—厌氧特征,与开放海沟通有限。

2、有效厚度

广泛分布的泥页岩是形成页岩气的重要条件。同时,沉积有效厚度是保证足够的有机质及充足的储集空间的前提条件,页岩的厚度越大,页岩的封盖能力越强,有利于气体的保存,从而有利于页岩气成藏。美国5大页岩气勘探开采区的页岩净厚度为9.14~91.44米,其中产气量较高的Barnett页岩和Lewis页岩的平均厚度在30.48米以上。

3、总有机碳含量(TOC)

总有机碳含量是烃源岩丰度评价的重要指标,也是衡量生烃强度和生烃量的重要参数。有机碳含量随岩性变化而变化,对于富含粘土的泥页岩来说,由于吸附量很大,有机碳含量最高,因此,泥页岩作为潜力源岩的有机含量下限值就愈高,而当烃源岩的有机质类型愈好,热演化程度高时,相应的有机碳含量下限值就低。对泥质油源岩中有机碳含量的下限标准,国内外的看法基本一致,为0.4%~0.6%,而泥质气源岩有机碳含量的下限标准则有所不同。大量研究结果表明,气态烃分子小,在水中的溶解能力强,易于运移,气源岩有机碳含量的下限标准要比油源岩低得多。美国5大页岩气系统页岩总有机碳含量较高,分布范围大(0.5%~25%),可分为2类,Antrim页岩和New Albany页岩的TOC含量较高,一般分布于0.3%~25%之间;而Ohio页岩、Barnett页岩和Lewis页岩的TOC含量在0.45%~4.7%之间。

4、干酪根类型和成熟度

在不同的沉积环境中,由不同来源有机质形成的干酪根,其组成有明显的差别,其性质和生油气潜能也有很大差别。因此,研究干酪根的类型(性质)是油气地球化学的一项重要内容,也是评价干酪根生油、生气潜力的基础。干酪根类型是衡量有机质产烃能力的参数,不同类型的干酪根同时也决定了产物以油为主还是以气为主。一般来说,Ⅰ型干酪根和Ⅱ型干酪根以生油为主,Ⅲ型干酪根则以生气为主。纵观美国页岩气盆地的页岩干酪根类型,主要以Ⅰ型干酪根与Ⅱ型干酪根为主,也有部分Ⅲ型干酪根,而且不同干酪根类型的页岩都生成了数量可观的气,有理由相信,干酪根类型并不是决定产气量的关键因素。沉积岩石中分散有机质的丰度和成烃母质类型是油气生成的物质基础,而有机质的成熟度则是油气生成的关键。干酪根只有达到一定的成熟度才能开始大量生烃和排烃。不同类型的干酪根在热演化的不同阶段生烃量也不同。在低熟阶段(0.4%~0.6%),有机质就可以向烃类转变。美国5大页岩盆地页岩的热成熟度分布范围在0.4%~2.0%之间,可见在有机质生烃的整个过程都有页岩气的生成。随着成熟度的增加,早期所生成的原油开始裂解成气。美国Barnett页岩之所以含气量大,主要源于生烃体积(有机质丰度、生烃潜力和页岩厚度引起的结果),成熟度以及部分液态烃持续裂解生气。成熟度越低的Barnett页岩区,其气体产量就越低,这可能是因为生气少,残留烃的流动阻塞孔隙的缘故。许多高熟的Barnett页岩区干酪根和油的裂解使生气量大幅提高,导致页岩气井气体流量大。因此,成熟度是评价高流量页岩气相似性的关键地球化学参数。

页岩气影响成藏因素

1、孔隙度

在常规储层中,孔隙度是描述储层特性的一个重要方面。页岩储层也是如此。作为储层,页岩多显示出较低的孔隙度(<10%),当然也可以有很大的孔隙度,且在这些孔隙里储存大量的游离气,即使在较老的岩层,游离气也可以充填孔隙的50%。游离气含量与孔隙体积的大小密切联系。一般来说,孔隙体积越大,所含的游离气量就越大。

2、裂缝发育

页岩的矿物成分较复杂,石英含量高,且多呈粘土粒级,常以纹层形式出现,而有机质、石英含量都很高的页岩脆性较强,容易在外力作用下形成天然裂缝和诱导裂缝,有利于天然气渗流,说明岩性、岩石矿物成分是控制裂缝发育程度的主要内在因素。

由于页岩具有低孔隙度低渗透率的特性,产气量不高,而那些开放的矩形天然裂缝弥补了这一不足,大大提高了页岩气产量。裂缝改善了泥页岩的渗流能力,裂缝既是储集空间,也是渗流通道,是页岩气从基质孔隙流入井底的必要途径。并不是所有优质烃源岩都能够形成具有经济开采价值的裂缝性油气藏,只有那些低泊松比、高弹性模量、富含有机质的脆性页岩才是页岩气资源的首要勘探目标。

3、有机碳含量

在裂缝性页岩气系统中,页岩对气的吸附能力与页岩的总有机碳含量之间存在线性关系。

在相同压力下,总有机碳含量较高的页岩比其含量较低的页岩的甲烷吸附量明显要高。页岩气除了被有机质表面所吸附之外,还可以吸附在粘土的表面(干燥)。在有机碳含量接近和压力相同的情况下,粘土含量高的页岩所吸附的气体量要比粘土含量低的页岩高。而且随着压力的增大,差距也随之增大。

4、地层压力

地层压力也是影响页岩气产量的因素之一。研究表明,地层压力与吸附气有着正相关性,地层压力越大,页岩的吸附能力就越大,吸附气的含量也就越高。游离气含量也会随着压力的增加而增加,两者基本上呈线性关系。值得注意的是,压力在6.89MPa以前,吸附气含量随压力增加的幅度很明显,而在其之后,增加的幅度不太明显,类似于常规的致密气藏。当然,不同地区由于有机质含量和周围围岩封存能力的不同,压力梯度也会产生差异。

除了上述影响因素之外,有机质类型、成熟度等也会影响页岩气含量。

页岩气成藏过程

页岩气经历了复杂多变的成藏过程,是天然气成藏机理序列中的重要构成和典型代表。根据不同的成藏条件,页岩气成藏可以表现为典型的吸附机理、活塞运聚机理或置换运聚机理。按照成藏机理的不同,可将天然气成藏过程分为3个主要阶段,而前2个阶段即是页岩气的成藏过程。

第1阶段是天然气的生成与吸附。该阶段发生在成藏初期,与煤层气的成藏机理相同。由于页岩中的有机碳等物质表面具有吸附能力,页岩生气过程中,最开始生成的少量天然气均被有机碳等物质吸附,故页岩层中仅存有吸附态的天然气(图A)。

第2阶段是天然气的造隙及排出。该阶段处于生气高峰期,与根缘气的形成机理类似。随着天然气的大量生成,页岩中的有机碳无法将其完全吸附,因此未被吸附的天然气在页岩层中以游离态聚集。随着页岩气的不断生成,聚集的大量游离气因膨胀而形成高压,直至岩层破裂并产生微裂隙。由于此时产生的裂缝或孔隙极其微小,使得页岩气无法在页岩层内部自由流动。在此后的强力生烃作用即生气膨胀力的作用下,页岩气沿构造上倾方向从底部高压区向高部相对低压区发生排驱和整体推进作用,从而使地层处于大面积包含气状态。此阶段生成的天然气不受浮力作用,表现为活塞式的运聚特征(图B)。

第3阶段是天然气的置换与运移。如果天然气的生成量持续增加而页岩层的外部又有合适的储层,则在浮力作用下,天然气将以置换方式沿裂缝从泥页岩层向储层运移,从而形成常规天然气藏(图C)。

页岩气成藏过程中,吸附机理与活塞式运聚机理共同作用,控制着页岩气藏中吸附态和游离态天然气所占空间比例变化。因此,页岩气的成藏机理实质上是天然气在页岩孔隙中赋存状态之间的动态平衡。页岩中吸附态天然气的存在是由其本身所含岩石特性决定的,与保存条件没有直接关系,故页岩气成藏后对保存条件没有特殊要求。在四川盆地海相地层中监测到的气测异常也证实了即便是多期次的构造运动,也不会对页岩气藏有太大的影响。

查看详情

相关推荐

立即注册
免费服务热线: 400-888-9639