选择特殊符号
选择搜索类型
请输入搜索
有机污染物在曝气池内的降解,经历了第一阶段的吸附和第二阶段代谢的完整过程,活性污泥也经历了一个从池端的对数增长,经减速增长到池末端的内源呼吸期的完全生长周期。
⑴入流水质水量:BOD5:N:P=100:5:1
⑵混合液悬浮固体浓度(MLSS):包括活细胞、无活性又难降解的内源代谢残留物、有机物和无机物,前三类有机物约占固体的成分的75﹪~85﹪。
用挥发性悬浮固体浓度(MLVSS)指标不包括无机物,更准确反映活性物质量,但测定较麻烦。对给定的废水,MLVSS /MLSS介于0.75~0.85之间。
⑶有机负荷:有进水负荷和去除负荷两种,前者指单位重量的活性污泥在单位时间内要保证一定的处理效果才能承受的有机物的量;后者指单位重量的活性污泥在单位时间内去除的有机物量。有时也用单位曝气池容积作为基准。
⑷剩余污泥排放量和污泥龄:微生物代谢有机物同时增值,剩余污泥排放量等于新净增污泥量。用新增污泥替换原有污泥所需时间称为泥龄θc。
⑸混合液溶解氧浓度
⑹水温:在一定范围内,随着温度升高,生化反应速率加快,增值速率也快;另一方面细胞组织入蛋白质、核酸等对温度很敏感,温度突升并超过一定的限度时,会产生不可逆的破坏。各类微生物适应的温度范围见下表:
表 各类微生物适应的温度范围
类别 | 最低温度/℃ | 最适温度/℃ | 最高温度/℃ |
高温型 | 30 | 50~60 | 70~80 |
中温型 | 10 | 30~40 | 50 |
常温型 | 5 | 15~30 | 40 |
低温型 | 10 | 5~10 | 30 |
⑺ pH值:一般好氧微生物的最适宜pH=6.5~8.05;pH<4.5时,真菌占优势,引起污泥膨胀;另一方面,微生物的活动也会影响混合液的pH值。
⑻曝气池和二沉池的水力停留时间
⑼二沉池的水力表面负荷、固体表面负荷和出水溢流堰负荷。
活性污泥法的处理效果取决于活性污泥的数量和性能。衡量活性污泥质量的指标主要有:
①污泥浓度;
②污泥沉降比SV;
③污泥体积指数SVI;
④活性污泥的耗氧速率;
⑤污泥的沉降速度;
⑥活性污泥的生物相;
⑦粒度和颜色等。
性能良好的活性污泥外观呈黄褐色,粒径0.02~0.2mm,比表面积20~100cm2/ml,含水率在99%以上,相对密度1.002~1.006,SV=15%~30%,SVI=50~150。.
按微生物对氧的要需求,生物法可分为好氧、厌氧、缺氧3类;
按微生物的生长方式分悬浮生长、固着生长、混合生长3类;
此外,还可以按操作条件(负荷、温度、连续性)和用途分类。
通活性污泥法又称传统活性污泥法。活性污泥废水生物处理系统的传统方式。系统由曝气池、二次沉淀池和污泥回流管线和设备三部分组成。液流为有回流的推流式。初次沉淀后的废水津水域由二次沉淀池来的回流污泥混合后再...
1、活性污泥法又称传统活性污泥法。活性污泥废水生物处理系统的传统方式。系统由曝气池、二沉池和污泥回流管线及设备三部分组成。2、作用是去除有机物和植物性营养物,以及通过生物絮凝去除胶体颗粒,同时也可以获...
这个要根据设计进水的浓度和流量进行工艺计算的。 一般传统活性污泥我主要接触氧化沟和A2O的,根据进出水的情况,污泥浓度的数值,溶解氧的数值。
液流有回流的推流式。初次沉淀后的废水与二沉池回流的活性污泥混合后进入曝气池,大约曝气6小时,进水与回流污泥通过扩散曝气或机械曝气作用进行混合。流动过程中,有机物经过吸附、絮凝和氧化作用等作用被去除。一般地,从曝气池流出的混合液在二沉池沉淀后,沉淀池内的活性污泥以进水量的25~50%返回曝气池(即污泥回流比为25~50%)。这种方法常用于低浓度生活污水处理,对冲击负荷很敏感。生化需氧量(BOD5)的去除率达85~95%。
生物处理的目的是去除有机物和植物性营养物,以及通过生物絮凝去除胶体颗粒,同时也可以获得能量和产品,主要机理是微生物代谢。
1912年,英国的Clark和Gage发现对污水进行长时间曝气会产生污泥,同时水质会得到明显的改善。继而Arden和Lockgtt对这一现象进行了研究。
最初的曝气试验是在锥形瓶中进行的,每天试验结束时把瓶子倒空,第二天重新开始。他们偶然发现,当瓶子清洗不完善,瓶壁附着污泥时,处理效果反而更好。从而意识到了瓶壁留下污泥的重要性,他们把它称为活性污泥。
随后,他们在每天结束试验前,把曝气后的污水静止沉淀,只倒去上层净化清水,留下瓶底的污泥,供第二天使用。这一方法大大缩短了污水处理的时间。
依据这一试验结果,1916年世界上第一个活性污泥法污水处理厂建成了。
在显微镜下观察这些褐色的絮状污泥,可以见到大量的细菌、真菌、原生动物和后生动物,它们组成了一个特有的生态系统。这些微生物(主要是细菌)以污水中的有机物为食料,进行代谢和繁殖,从而降低了污水中有机物的含量。
原生动物,如钟虫等的出现,是水质达到一定标准的标志。
活性污泥可分为好氧活性污泥和厌氧颗粒活性污泥。
(1)曝气池首端有机污染物负荷高,好氧速度也高,为了避免由于缺氧形成厌氧状态,进水有机物负荷不宜过高。为达到一定的去污能力,需要曝气池容积大,占用的土地较多,基建费用高;
(2)好氧速度沿池长是变化的,而供氧速度难于与其相吻合、适应,在池前段可能出现好氧速度高于供氧速度的现象,池后段又可能出现溶解氧过剩的现象,对此,采用渐减供氧方式,可一定程度上解决这些问题;
(3)对进水水质、水量变化的适应性较低,运行效果易受水质、水量变化的影响。
重新培养和驯化。
表 污泥SVI值异常原因及对策
异常现象 | 原因 | 具体原因 | 对策 |
SVI值异常高 | 原废水水质变化 | 1.水温降低 2.pH值下降 3.低分子量溶解性有机物大量进入 4.N、P不足 5.腐败废水大量流入 6.消化池上清夜大量流入. 7.原废水SS浓度太低 8.有害物质流入 | 降低污泥负荷 加碱调整 降低负荷 投加氨水、硫胺、尿素、磷酸盐 降低负荷 减少流入量 缩短初沉池停留时间 去除抑制物 |
曝气池管理不善 | 9.有机负荷过高或过低 10.溶解氧不足 | 相应采取措施 增加供气量、短时间闷曝气 | |
二沉池管理不善 | 11.活性污泥在二沉池停留时间太长 | 缩短停留时间,加大回流量 | |
SVI值异常低 | 原废水水质变化 | 12.水温上升 13.土、砂石等流入 | |
曝气池管理不善 | 14.有机负荷过低 |
①丝状菌膨胀
活性污泥絮体中的丝状菌过度繁殖,导致膨胀,促成条件包括进水有机物少,F/M太低,微生物食料不足;进水氮、磷不足;pH太低,不利于微生物生长;混合液溶解氧太低,不能满足需要;进水波动太大,对微生物造成冲击。
②非丝状菌膨胀
菌胶团细菌本身生理活动异常产生的膨胀。
一种是由于进水中含有大量的溶解性有机物,使污泥负荷太高,而进水中又缺乏足够的N、P,或者DO(溶氧)不足。细菌很快把大量有机物吸入体内,又不能代谢分解,向外分泌出过量的多糖类物质。这些物质分子中含羟基而具有较强的亲水性,使活性污泥的结合水高达400﹪(正常为100﹪左右),呈粘性的凝胶状,无法在二沉池分离。另一种非丝状菌膨胀是进水中含有较多毒物,导致细菌中毒,不能分泌出足够量的粘性物质,形不成絮体,也无法分离。
③临时措施
临时控制措施包括污泥助沉法(加混凝剂和助凝剂)和杀菌法。
二沉池出水异常主要表现在透明度降低、SS和BOD值升高、大肠菌群数增加等。原因要从二沉池本身和污泥特性两方面分析,判明原因后采取相应的对策。
原因:
(1)由于曝气池中含有硝酸盐,沉淀池中有反硝化作用,产生氮气。
(2)由于在曝气池底积压时间过长,形成厌氧作用,产生CH4和CO2
(3)若产生H2S,活性污泥便变黑,并发生臭味。
通常曝气池的设计不当,回流缝易于被活性污泥堵塞,才发生这种现象。上述几种污泥上浮现象和活性污泥的性质无关,只团污泥中产生气泡,使污泥密度低于水,因此污泥上浮不应与污泥膨胀混为一谈。
真正的污泥膨胀可分成"菌胶团膨胀"和"丝状菌膨胀"二类。
菌胶团膨胀
菌胶团膨胀的污泥片中含有大量的结合水,正常的活性污泥含有90%的结合水,但SVI=400的活性污泥,含有380%的结合水,显微镜观察这种污泥,可见污泥片疏松,表面增大。
丝状菌膨胀
丝状菌膨胀的污泥在量皿中沉淀得很慢,SVI大于100,有时甚至大到2000以上,上清液很清洁,膨胀的污泥有时发生甜或水果香。
丝状菌膨胀的污泥片和正常的活性污泥相似,只不过从污泥团块中伸出很多长的丝状菌,有时污泥片几乎全由丝状菌组成。丝的直径约1微米,不分枝。
这种丝状菌大多属球衣细菌。球衣细菌可在各种简单的,可溶性的底质中生长繁殖,但在复杂的碳水化合物,脂肪和蛋白质中却生长很慢,它们可利用氨或硝酸盐作为氮源,但需维生素B12或给它蛋氨酸的营养。
球衣细菌是否可在厌氧的条件下生长,尚存疑问,但有人发现它们可在DO低于0.1mg/l的条件下生长,它们生长的最适pH为5.8~8.1。最适温度为30℃.在15℃以下便不能生长,因此它不是活性污泥低温解体的原因。
从上述这些资料可以知道,引起丝状菌膨胀的原因似乎是简单的可溶性的有机化合物。它们易于被子丝状菌同化。所以有利于丝状菌的生长而复杂的可溶性化合物,它们必须在水解以后才能被同化的这些化合物有利于活性污泥微生物的生长,而且不论是哪一种底物,如果负荷太高都会引起丝状菌膨胀。
组成废水的各种成份,由于比例失调,也可引起污泥膨胀,如废水中c/n比失调,若由于碳水化合物的含量过高,可适当的投加尿素,碳酸铵或氯化铵。如系统进水浓度太高,可减低进水量。
其它如废水中含有大量的有机物或石油,以及含有大量的腐败物质都可以引起膨胀。在曝气池中过多或过少的充氧。或搅动不充分,短流混凝土合液中固体的含量过低或过高,都可引起膨胀。
活性污泥法工艺的原理
活性污泥法工艺的原理 一、活性污泥的形态、组成与性能指标 1.活性污泥法工艺 活性污泥法工艺是一种应用最广泛的废水好氧生化处理技术,其主要由曝气池、二次沉淀池、 曝气系统以及污泥回流系统等组成(图 2-5-1)。废水经初次沉淀池后与二次沉淀池底部回流的活性污 泥同时进入曝气池,通过曝气,活性污泥呈悬浮状态,并与废水充分接触。废水中的悬浮固体和胶状 物质被活性污泥吸附, 而废水中的可溶性有机物被活性污泥中的微生物用作自身繁殖的营养, 代谢转 化为生物细胞,并氧化成为最终产物 (主要是 CO2)。非溶解性有机物需先转化成溶解性有机物,而后 才被代谢和利用。废水由此得到净化。净化后废水与活性污泥在二次沉淀池内进行分离,上层出水排 放;分离浓缩后的污泥一部分返回曝气池,以保证曝气池内保持一定浓度的活性污泥,其余为剩余污 泥,由系统排出。 2.活性污泥的形态和组成 活性污泥通常为黄褐色(有时呈铁红色
活性污泥法工艺分类
活性污泥法主要工艺分类 类型 具体工艺 普通活性污泥法及其变型 普通活性污泥法 硝化工艺 A/O脱氮工艺 A/O脱磷工艺 A2 /O脱氮除磷工艺 AB法 氧化沟 卡鲁赛尔氧化沟 双沟式氧化沟 三沟式氧化沟 奥贝尔氧化沟 一体化氧化沟 SBR工艺 传统 SBR 工艺 ICEAS CAST DAT-JAT UNITANK 各种工艺的主要优缺点和最佳适用条件 工艺名称 主要优缺点 最佳适用条件 优点: 1、去除有机物效果好 2、硝化工艺可去除氨氮 3、技术成熟,十分安全可靠 普通活性污泥法及 硝化工艺 4、污泥经厌氧消化达到稳定 5、用于大型污水厂费用较低 6、沼气可回收利用 缺点: 1、生物脱氮除磷效果差 2、用于中小型污水厂费用偏高 3、沼气回收利用经济效益差 不要求脱氮除磷的大 型和较大型污水处理 厂 A/O除磷工艺 优点: 1、去除有机物的同时可生物除磷 2、污泥沉降性能好
①一次性投资比传统方法低1/4;②占用面积为常规工艺的1/10~1/5,运行费低1/5;③进水要求悬浮物50~60mg/L,最好与一级强化处理相结合,如采用水解酸化池;④填料多为页岩陶粒,直径5mm,层高1.5~2m;⑤水往下、气往上的逆向流可不设二沉池。
曝气生物滤池与普通活性污泥法相比,具有有机负荷高、占地面积小(是普通活性污泥法的1/3)、投资少(节约30%)、不会产生污泥膨胀、氧传输效率高、出水水质好等优点,但它对进水SS要求较严(一般要求SS≤100mg/L,最好SS≤60mg/L),因此对进水需要进行预处理。同时,它的反冲洗水量、水头损失都较大。
曝气生物滤池作为集生物氧化和截留悬浮固体于一体,节省了后续沉淀池(二沉池),具有容积负荷、水力负荷大,水力停留时间短,所需基建投资少,出水水质好:运行能耗低,运行费用少的特点。
①一次性投资比传统方法低1/4;②占用面积为常规工艺的1/10~1/5,运行费低1/5;③进水要求悬浮物50~60mg/L,最好与一级强化处理相结合,如采用水解酸化池;④填料多为页岩陶粒,直径5mm,层高1.5~2m;⑤水往下、气往上的逆向流可不设二沉池。
曝气生物滤池与普通活性污泥法相比,具有有机负荷高、占地面积小(是普通活性污泥法的1/3)、投资少(节约30%)、不会产生污泥膨胀、氧传输效率高、出水水质好等优点,但它对进水SS要求较严(一般要求SS≤100mg/L,最好SS≤60mg/L),因此对进水需要进行预处理。同时,它的反冲洗水量、水头损失都较大。
曝气生物滤池作为集生物氧化和截留悬浮固体于一体,节省了后续沉淀池(二沉池),具有容积负荷、水力负荷大,水力停留时间短,所需基建投资少,出水水质好:运行能耗低,运行费用少的特点。
(1)废水如得不到充分的混合搅拌,处理效果就要下降,因而在形状和结构不利于混合搅拌的曝气池就不适于采用阶段曝气法;
(2)曝气池平均地分成数间,废水又是等量注入,因而在最后的一间内,废水的曝气时间短,活性污混合浓度低,因此净化程度下降 ;
(3)出水水质较普通活性污泥法略差。2100433B