选择特殊符号
选择搜索类型
请输入搜索
炔烃的熔沸点低、密度小、难溶于水、易溶于有机溶剂,一般也随着分子中碳原子数的增加而发生递变。炔烃在水中的溶解度比烷烃、烯烃稍大。乙炔、丙炔、1-丁炔属弱极性,微溶于水,易溶于非极性溶液中碳架相同的炔烃,三键在链端极性较低。炔烃具有偶极矩,烷基支链多的炔烃较稳定。
危险特性:极易燃烧爆炸。与空气混合能形成爆炸性混合物,遇明火、高热能引起燃烧爆炸。与氧化剂接触猛烈反应。与氟、氯等接触会发生剧烈的化学反应。能与铜、银、汞等的化合物生成爆炸性物质。
溶解性:微溶于乙醇,溶于丙酮、氯仿、苯。
简单炔烃的沸点、熔点以及密度,一般比碳原子数相同的烷烃和烯烃要高一些。这是由于炔烃分子较短小、细长,在液态和固态中,分子可以彼此很靠近,分子间的范德华力很强。
化合物 |
熔点/℃ |
沸点/℃ |
相对密度 |
---|---|---|---|
乙炔 |
-82(在压力下) |
-82(升华) |
— |
丙炔 |
-102.5 |
-23 |
— |
1-丁炔 |
-122 |
8 |
— |
1-戊炔 |
-98 |
40 |
0.695 |
1-己炔 |
-124 |
71 |
0.719 |
1-庚炔 |
-80 |
100 |
0.733 |
1-辛炔 |
-70 |
126 |
0.747 |
2-丁炔 |
-24 |
27 |
0.694 |
2-戊炔 |
-101 |
56 |
0.714 |
2-己炔 |
-88 |
84 |
0.730 |
3-己炔 |
-105 |
81 |
0.725 |
炔烃是一类有机化合物,属于不饱和烃。其官能团为碳碳三键(-C≡C-)。直链单炔烃的通式CnH2n-2,其中n为≥2的正整数。简单的炔烃化合物有乙炔(C2H2)、丙炔(C3H4)等。炔烃原来也被叫做电石气,电石气通常也被用来特指炔烃中最简单的乙炔。
“炔”字是新造字,左边的火取自“碳”字,表示可以燃烧;右边的夬取自“缺”字,表示氢原子数和化合价比烯烃更加缺少,意味着炔是烷(完整)和烯(稀少)的不饱和衍生物。
简单的炔烃的熔点、沸点,密度均比具有相同碳原子数的烷烃或烯烃高一些。不易溶于水,易溶于乙醚、苯、四氯化碳等有机溶剂中。炔烃可以和卤素、氢、卤化氢、水发生加成反应,也可发生聚合反应。 因为炔在燃烧时放出大量的热,炔又常被用来做焊接时的原料。
有机分子中的键长可用电子衍射、微波、红外或拉曼光谱予以测定。乙烷、乙烯和乙炔中的碳碳键长和碳氢键长如下所示:
由于π键的出现,使碳碳间的距离缩短,而且三键比双键更短。这是因为随着不饱和度的增大,两个碳原子之间的电子云密度也增大,所以碳原子越来越靠近。碳氢化合物中的碳氢键的键长也不是一个常数。这说明:键长除了与成键原子的不饱和度有关外,还和参与成键的碳原子的杂化方式有关。即随着杂化轨道中s成分的增大,碳碳键的键长缩短。乙烷、乙烯和乙炔中的碳原子的s成分分别为25%,33%和50%,从sp3到sp,碳原子的s成分增大了一倍,所以碳碳键的键长越来越短。
由于杂化碳原子的s成分不同,丙烷、丙烯、丙炔中的碳碳单键的键长是不等长的,s成分越多,碳碳单键的键长越短,随着键长的缩短,原子间的键能将增大。
氟利昂(英文freon)又名氟里昂,氟氯烃。氟里昂是几种氟氯代甲烷和氟氯代乙烷的总称,如R22、CFC-12等。氟利昂在常温下都是无色气体或易挥发液体,略有香味,低毒,化学性质稳定。其中最重要的是二氯...
我把我的教材关于这方面的情况给你看,相当详细:第五节 苯 芳香烃 一、教学目的要求 1.使学生了解苯的组成和结构特征,掌握苯的主要性质。 2.使学生了解芳香烃的概念。 3.使学生了解、二的某些化学性质...
中国环境空气质量标准中没有非甲烷总烃的标准。目前大家一致采用2mg/m3。数据来源出处是 由中国环境科学出版社出版的国家环境保护局科技标准司的《大气污染物综合排放标准详解》,具体第244页。 原文...
1、乙炔与烷烃不同,炔烃不稳定且非常活跃,乙炔燃烧发出大量的热,乙炔焰常被用来焊接。
2、炔化物干燥后,经撞击而发生强烈爆炸,生成金属和碳。故在反应结束时,应加入稀硝酸使之分解。
4、乙炔不稳定、非常活跃。乙炔储存要避免受热。
5、乙炔禁配强氧化剂、强酸、卤素。
6、乙炔与空气混合,能形成爆炸性混合物,遇明火、高热能引起燃烧、爆炸。
7、乙炔能与铜、银、汞等的化合物生成爆炸性物质。2100433B
炔烃的一般制备是通过邻二卤化烷烃的脱卤化氢作用,也可以通过金属炔化合物与一级卤化烷反应制得。在Fritsch-Buttenberg-Wiechell重排中,炔烃又溴化乙烯基起始制得。
炔烃也可以由醛通过Corey-Fuchs反应制得,亦可以通过Seyferth-Gilbert同素化制得。
乙炔制作用煤或石油作原料,是生产乙炔的两种主要途径。随着天然气化学工业的发展,天然气即将成为乙炔的主要来源。
甲烷在1500℃电弧中经极短时间(0.1~0.01s)加热,裂解成乙炔,即:
2CH4→C2H2 3H2,ΔH=397.4KJ/mol
由于乙炔在高温很快分解成碳,故反应气须用水很快地冷却,乙炔产率约15%,改用气流冷却反应气,可提高乙炔产率达25%~30%。裂解气中还含有乙烯、氢和碳尘。这个方法的总特点是原料非常便宜,在天然气丰富的地区采用这个方法是比较经济的。石脑油也可用此方法生产乙炔。
用焦炭和氧化钙经电弧加热至2200℃,制成碳化钙(CaC2),它再与水反应,生成乙炔和氢氧化钙:
CaO 3C<—2200℃—>CaC2 CO,ΔH=460kJ/mol
CaC2 2H2O——>C2H2 Ca(OH)2
此法成本较高,除少数国家外,均不用此法。
用石油和极热的氢气一起热裂制备乙炔,即把氢气在3500~4000℃的电弧中加热,然后部分等离子化的等离子体氢(正负离子相等)于电弧加热器出口的分离反应室中与气体的或气化了的石油气反应,生成的产物有:乙炔、乙烯(二者的总产率在70%以上)以及甲烷和氢气。
乙炔过去是非常重要的有机合成原料,由于乙炔的生产成本相当高,以乙炔为原料生产化学品的路线逐渐被以其他化合物(特别是乙烯、丙烯)为原料的路线所取代。
纯的乙炔是带有乙醚气味的气体,具有麻醉作用,燃烧时火焰明亮,可用以照明。工业乙炔不好闻气味是由于含有硫化氢、磷化氢、以及有机磷、硫化合物等杂质引起的。与乙烯、乙烷不同,乙炔在水中具有一定的溶解度,但易溶于丙酮。液化乙炔经碰撞、加热可发生剧烈爆炸,乙炔与空气混合、当它的含量达到3~70%时,会剧烈爆炸。商业上为安全地处理乙炔,把它装入钢瓶中,瓶内装有多孔材料,如硅藻土、浮石或木炭,再装入丙酮。丙酮在常压下,约可溶解相当于它体积25倍的乙炔,而在1.2MPa下可溶解相当其体积300倍的乙炔。乙炔和氧气混合燃烧,可产生2800℃的高温,用以焊接或切割钢铁及其他金属。
炔烃的碳原子2s轨道同一个2p轨道杂化,形成两个相同的sp杂化轨道。堆成地分布在碳原子两侧,二者之间夹角为180度。
乙炔碳原子一个sp杂化轨道同氢原子的1s轨道形成碳氢σ键,另一个sp杂化轨道与相连的碳原子的sp杂化轨道形成碳碳σ键,组成直线结构的乙炔分子。未杂化的两个p轨道与另一个碳的两个p轨道相互平行,“肩并肩”地重叠,形成两个相互垂直的π键。
亲电加成
炔烃可以发生亲电加成反应,但由于sp碳原子的电负性比sp2碳原子的电负性强,使电子与sp碳原子结合得更为紧密,尽管三键比双键多一对电子,也不容易给出电子与亲电试剂结合,因而使三键的亲电加成反应比双键的亲电加成反应慢。
炔烃可以和两分子亲电试剂反应。先是与一分子试剂反应,生成烯烃的衍生物,然后再与另一分子试剂反应,生成饱和的化合物。不对称试剂和炔烃加成时,也遵循马氏规则,多数加成是反式加成。
与卤素的加成
卤素和炔烃的加成为反式加成。反应机理与卤素和烯烃的加成相似,但反应一般较烯烃难。例如,烯烃可使溴的四氯化碳溶液立刻褪色,炔烃却需要几分钟才能使之褪色。故分子中同时存在非共轭的双键和叁键,在它与溴反应时,首先进行的是双键的加成。
又如,乙炔与氯的加成反应须在光或三氯化铁或氯化亚锡的催化作用下进行,中间产物为反二氯乙烯,最后产物为1,1,2,2-四氯乙烷(CHCl2CHCl2)。
与氢卤酸的加成
炔烃和氢卤酸的加成反应是分两步进行的,选择合适的反应条件,反应可控制在第一步。这也是制卤化烯的一种方法。
一元取代乙炔与氢卤酸的加成反应遵循马氏规则。
当炔键两侧都有取代基时,需要比较两者的共轭效应和诱导效应,来决定反应的区域选择性,但一般得到的是两种异构体的混合物。
与水加成
炔烃和水的加成常用汞盐作催化剂。例如,乙炔和水的加成是在10%硫酸和5%硫酸亚汞水溶液中发生的。
水先与三键加成,生成一个很不稳定的加成物——烯醇。烯醇很快发生异构化,形成稳定的羰基化合物。
炔烃与水的加成遵循马氏规则,因此除乙炔外,所有的取代乙炔和水的加成物都是酮,但一元取代乙炔与水的加成物为甲基酮,二元取代乙炔的加水产物通常是两种酮的混合物。
自由基加成
有过氧化物存在时,炔烃和溴化氢发生自由基加成反应,得反马氏规则的产物。
与氢氰酸加成
氢氰酸可与乙炔发生亲核加成反应。反应中CN-受限于三键进行亲核加成形成碳负离子,再与质子作用,完成生成丙烯腈的反应。因乙炔成本较高,现世界上几乎都采用丙烯的氨氧化反应制丙烯腈,反应过程是丙烯与氨的混合物在400~500℃,在催化的作用下用空气氧化。
与氢加成
炔烃可与带有下列“活泼氢”的有机物,如—OH,—SH,—NH2,=NH,—CONH2或—COOH发生加成反应,生成含有双键的产物。例如,乙醇在碱催化下于150~180℃,0.1~1.5MPa下与乙炔反应,生成乙烯基乙醚。
根据原料的不同,反应条件(即温度、压力、催化剂等)也可以不同。这类反应的反应机理是烷氧负离子与三键进行亲核加成,产生一个碳负离子中间体,碳负离子中间体从醇分子中得到质子,得产物。
催化加氢:在常用催化剂钯、铂或镍的作用下,炔烃与2mol H2加成,生成烷烃。中间产物难以分离得到。
若用Lindlar(林德拉)催化剂(钯附着于碳酸钙及小量氧化铅上,使催化剂活性降低)进行炔烃的催化氢化反应,则炔烃只加 1 mol H2得Z型烯烃。例如:一个天然的含三键的硬脂炔酸,在该催化剂作用下,生成与天然的顺型油酸完全相同的产物。
用硫酸钡作载体的钯催化剂在吡啶中也可以使碳碳三键化合物只加 1 mol H2,生成顺型的烯烃衍生物。这表明,催化剂的活性对催化加氢的产物有决定性的影响。炔烃的催化加氢是制备Z型烯烃的重要方法,在合成中有广泛的用途。
硼氢化—炔烃与乙硼烷反应生成烯基硼烷,烯基硼烷与醋酸反应,生成Z型烯烃。第一步反应是炔烃的硼氢化反应,第二步反应是烯基硼的还原反应,总称硼氢化—还原反应。
碱金属还原 炔类化合物在液氨中用金属钠还原,主要生成E型烯烃衍生物。
氢化铝锂还原:炔烃用氢化铝锂还原也能得到E型烯烃。
炔烃经臭氧或高锰酸钾氧化,可发生碳碳三键的断裂,生成两个羧酸。
在水和高锰酸钾存在的条件下,温和条件: PH=7.5时, RC≡CR' → RCO-OCR'
剧烈条件:100°C时,RC≡CR' → RCOOH R'COOH
CH≡CR →CO2 RCOOH
炔烃与臭氧发生反应,生成臭氧化物,后者水解生成α—二酮和过氧化物,随后过氧化物将α-二酮氧化成羧酸。
炔烃中C≡C的C是sp杂化,使得Csp-H的σ键的电子云更靠近碳原子,增强了C-H键极性使氢原子容易解离,显示“酸性”。
电负性:sp>sp2>sp3,酸性大小顺序:乙炔>乙烯>乙烷。
连接在C≡C碳原子上的氢原子相当活泼,易被金属取代,生成炔烃金属衍生物叫做炔化物。
CH≡CH Na → CH≡CNa 1/2H2↑(条件NH3)
CH≡CH 2Na → CNa≡CNa H2↑ (条件NH3,190℃~220℃)CH≡CH NaNH2→ CH≡CNa NH3↑
CH≡CH Cu2Cl2(2AgCl) → CCu≡CCu(CAg≡CAg)↓ 2NH4Cl 2NH3(注意:只有在三键上含有氢原子时才会发生,用于鉴定端基炔RH≡CH)。
炔会发生聚合反应:2CH≡CH →CH2=CH-C≡CH(乙烯基乙炔) CH≡CH →CH2=CH-C≡C-CH=CH2(二乙烯基乙炔)
炔在不同的催化剂作用下,可有选择地聚合成链形或环状化合物。例如在氯化亚铜或氯化铵的作用下,可以发生二聚或三聚作用,生成苯。但这个反应苯的产量很低,同时还产生许多其他的芳香族副产物,因而没有制备价值,但为研究苯的结构提供了有力的线索。
除了三聚环状物外,乙炔在四氢呋喃中,经氰化镍催化,于1.5~2MPa、50℃时聚合,可产生环辛四烯。该化合物在认识芳香族化合物的过程中,起着很大的作用。以往认为乙炔不能在加压下进行反应,因为它受压后,很容易爆炸。后来发现将乙炔用氮气稀释,可以安全地在加压下进行反应,因而开辟了乙炔的许多新型反应,制备出许多重要的化合物。环辛四烯就是其中一个。
将乙炔通入银氨溶液或亚铜氨溶液中,则分别析出白色和红棕色炔化物沉淀。
其他末端炔烃也会发生上述反应,因此可通过以上反应,可以鉴别出分子中含有的—C≡CH基团。
和炔烃的氧化一样,根据高锰酸钾溶液的颜色变化可以鉴别炔烃,根据所得产物的结构可推知原炔烃的结构。
塔里木盆地沥青生烃特征与生烃潜力
通过沥青砂岩与重质油热模拟实验方法,对塔里木盆地下古生界广泛赋存的沥青生烃特征与生烃潜力进行探讨。热模拟实验结果显示,沥青与重质油在热作用下均能生成烃类,表现出烃类裂解特征,生烃过程中既有气态烃也有液态烃生成;沥青砂岩样品、重质油样品与低成熟度一般品质的海相烃源岩生烃潜力大体相当。塔里木盆地下古生界存在沥青生烃证据,但实际成藏贡献尚需进一步油气地球化学证据支持。
本品用作有机合成的中间体及特殊燃料。
用作有机合成试剂。
可溶于乙醇和乙醚。
可二聚生成C2H5C≡CH=CHC2H5或C2H5C≡C-C(C2H5)=CH2。可以发生炔烃的一般反应。叁键碳所连的氢有酸性,可生成炔钠或格氏试剂。与醇钾共热时发生叁键转移,异构化为2-丁炔。脱氢偶联可得3,5-辛二炔。
碳氢化合物的主要来源是天然气(natural gas)和石油(petroleum)。尽管各地的天然气组分不同,但几乎都含有75%的甲烷、15%的乙烷及5%的丙烷,其余的为较高级的烷烃。而含烷烃种类最多的是石油,石油中含有1至50个碳原子的链形烷烃及一些环状烷烃,而以环戊烷、环己烷及其衍生物为主,个别产地的石油中还含有芳香烃。我国各地产 的石油,成分也不相同,但可根据需要,把它们分馏成不同的馏分加以应用。烷烃不仅是燃料的重要来源,而且也是现代化学工业的原料。另外,烷烃还可以作为某些细菌的食物,细菌食用烷烃后,分泌出许多很有用的化合物,也就是说烷烃经过细菌的“加工”后,可成为更有用的化合物。
上述情况表明,石油工业的发展对于国民经济以及有机化学的发展都非常重要。
石油虽含有丰富的各种烷烃,但这是个复杂混合物,除了 C1~C6烷烃外,由于其中各组分的相对分子质量差别小,沸点相近,要完全分离成极纯的烷烃,较为困难。采用气相色谱法, 虽可有效地予以分离,但这只适用于研究,而不能用于大量生产。因此在使用上,只把石油分离成几种馏分来应用,石油分析中有时需要纯的烷烃作基准物,可以通过合成的方法制备。
馏分 |
分馏区间 |
主要成分 |
燃料的应用 |
---|---|---|---|
燃气 |
bp 20℃以下 |
C1~C4 |
炼油厂燃料,液化石油气 |
汽油 |
bp 30℃~75℃ |
C4~C8 |
辛烷值较低,用作车用汽油的掺和组分 |
石脑油 |
bp 75℃~190℃ |
C8~C12 |
辛烷值太低,不直接用作车用汽油 |
煤油 |
bp 190℃~250℃ |
C10~C16 |
家用燃料,喷气燃料,拖拉机燃料 |
瓦斯油 |
bp 250℃~350℃ |
C15~C20 |
柴油,集中取暖用燃料 |
常压渣油 |
bp 350℃以上 |
C20以上 |
发电厂、船舶和大型加热设备用的燃料 |
汽油(petrol)在内燃机中燃烧而发生爆燃或爆震,这会降低发动机的功率并会损伤发动机。燃料引起爆震的倾向,用辛烷值(octane value)表示,在汽油燃烧范围内,将2,2,4-三甲基戊烷的辛烷值定为100。辛烷值越高,防止发生爆震的能力越强。六个碳以上的直链烷烃辛烷值很低,带支链的、不饱和的脂环、特别是芳环最为理想,有的超过100。大部分现代化的设备要求辛烷值在90~100之间。可将石脑油、常压渣油,有时也用瓦斯油经过加工,将辛烷值提髙到95左右,再掺入汽油中使用。加工方法之一是催化重整(catalytic reforming),主要将石脑油中C6以上成分芳构化(aromatization),即成芳香烃。此法除使石脑油提高辛烷值外,在化工中主要用来生产芳香烃加工方法之二为催化裂化,此法除能提高辛烷值外,在化工中主要用于生产丙烯、丁烯。
上保护
一、β-酮酯,炔丙醇,甲苯,回流,蒸去低沸点的醇酯交换得到炔丙酯,产率70-96%。
二、炔丙醇,DCC,DMAP。
三、炔丙醇,氯化亚砜,羧酸,室温,24h。
去保护
一、苄基三乙基铵四硫钼酸盐在乙腈中反应,收率61-97%。此方法也可用于苄基,烯丙基,叔丁基酯和醋酸酯的去保护。
二、Pd(Ph3P)2Cl2(Bu3SnH, 苯),此法也可用于烯丙酯,炔丙基膦酸酯,炔丙基氨基甲酸酯的去保护。
三、羰基钴。
四、二碘化钐
五、氢解。
六、电解,Ni(II),Mg阳极,DMF,室温,77-97%,此方法不适用于含有卤代苯酚的底物(可以脱卤)。
编译自: Protective groups in organic synthesis (Wuts & Greene,4th Ed), P: 594.