选择特殊符号
选择搜索类型
请输入搜索
本书力求理论与实际密切结合,对于流型的压差波动信号,从非线性理论的研究热点如混沌与分形、小波变换、Hilbert变换等,来研究不同流型的非线性特征;对于流型的图像信号,从流型图像的纹理和形状等方面,来提取不同流型的图像特征;从统计模式识别的新方法如神经网络和支持向量机等来研究分类器模型。此外还完成了在线识别系统的开发,这对指导两相流相关工业设备的设计及优化运行具有实际意义。
前言
第1章 绪论
1.1 两相流的定义和分类
1.2 两相流的特点
1.3 两相流参数检测
1.4 气流两相流流型识别的研究
参考文献
第2章 气液两相流型的划分和判别
2.1 常见流型的划分方法
2.2 水平管道中的气液两相流型划分
2.3 水平管道中气液两相流型判别
2.4 气液两相流型的测量方法
2.5 本章小结
参考文献
第3章 气液两相流型压差波动信号的测量
3.1 实验系统及步骤
3.2 实验信号与传感器的选择
3.3 两相流压差信号的获取
3.4 振动对实验装置的影响
3.5 实验装置中的噪声分析
3.6 实验测得的压差波动信号及分析
3.7 本章小结
参考文献
第4章 基于小波分析的压差波动信号去噪处理
4.1 小波基本理论
4.2 压差波动信号中噪声的辨识
4.3 小波去噪理论
4.4 本章小结
参考文献
第5章 基于小波分析的流型压差信号特征提取
5.1 压差波动信号的Wigner谱分析
5.2 基于连续小波变换的压差波动信号特征
5.3 奇异性特征提取
5.4 流型特征提取的小波包方法
5.5 本章小结
参考文献
第6章 基于混沌理论的流型压差信号特征提取
第7章 基于Hilbert-Huang变换的流型特征提取
第8章 气液两相流动的图像信号测量
第9章 气液两相流动的图像信号特征提取
第10章 流型的神经网络识别模型
第11章 流型的支持向量机模型
第12章 神经网络和证据理论融合的识别方法
第13章 气液两相流流型在线识别系统2100433B
《气液两相流型智能识别理论及方法》是科学出版社出版的一本科技图书。作者在多年从事气流两相流型识别的理论和试验研究工作中,做具有创造性的成果,取得了较满意的结果,本书为其成果的总结。
全书共分13章,首先简要介绍了两相流的定义、分类和特点及其参数检测和研究进展,然后详细地对气流两相流型划分和差别,气液两相流动的压差信号测量,基于小波分析的压差波动信号去噪处理、流型压差信号特征提取,基于混沌理论的流型压差信号特征提取,基于希尔伯特—黄变换的流型压差信号特征提取,气液两相流动的图像信号测量、特征提取,流型的神经网络识别模型,流型的支持向量机模型,神经网络和证据理论整合的识别方法和气流两相流流型在线识别系统方面的内容进行了论述。
本书可供控制理论和控制工程、模式识别与智能系统、检测技术与自动化装置、测试讲师技术与仪器、热能工程等相关专业人员及工程设计人员阅读,也可作为高等院校相关专业的研究生教材、本科生选修教材或参考书。
液相为连续相,气相为分散相。操作作时,塔内液体依靠重力作用,由上层塔板的降液管流到下层塔板的受液盘,然后横向流过塔板,从另一侧的降液管流至下一层塔板。溢流堰的作用是使塔板上保持一定厚度的液层。气体则在...
专利名称:二相流泵的制作方法技术领域:本实用新型二相流泵涉及离心泵和真空泵组合在一起的二相流体复合泵领域。技术背景以往采用离心泵输入液体、排出液体,然后,通过真空泵吸入同一介质气 体、排出同一介质气体...
通常输送电是三相四线制。三相就是三条火线,两两之间的电压都是380V,四线就是除三相之外加一零线。所有的火线相对零线来说都是220V.没有两相电,应该叫单相电,所谓单相电,就是任取一火线加上零线。火线...
竖直窄矩形通道气液两相流流型识别研究
在实验研究的基础上,采用小波分析的方法对窄矩形通道内两相流的流型进行有效的识别,为在不可视或不能进行摄影测试技术特殊情况下提供了有效识别方法。通过可视化观察发现,窄矩形通道内两相流流型主要有泡状流、弹状流、搅混流和环状流。采用小波分析法给出了4种流型的功率密度图,并结合每种流型的特征及压差波动特性,对每种流型的频率分布范围及最大能量分布范围给出了界定。因此,利用频率分布特征值及最大能量分布值可对流型进行有效的识别和判定。
输气管道内气液两相流流型监测技术研究
准确判断输气管道内气液两相流流型是深入输气管道工程研究与应用的基础。本文分别介绍了垂直上行管段和水平管段两种情况下输气管道内气液两相流的流型的分类方法 ,分析了影响输气管道内气液两相流流型的主要因素,并研究了目前主要的输气管道气液两相流流型的监测技术,对于输气工程研究与应用具有重要现实意义。
图1是《智能货柜内货品识别方法及装置、智能货柜》实施例一中的一种智能货柜内货品识别方法的流程示意图;
图2是《智能货柜内货品识别方法及装置、智能货柜》的服务器、重量传感器、货品识别指令发送单元和图像采集设备之间的通信示意图;
图3是《智能货柜内货品识别方法及装置、智能货柜》的包含步骤500的智能货柜内货品识别方法的流程示意图;
图4是《智能货柜内货品识别方法及装置、智能货柜》的智能货柜内货品识别方法中步骤100的流程示意图;
图5是《智能货柜内货品识别方法及装置、智能货柜》中包含步骤600的智能货柜内货品识别方法的流程示意图;
图6是《智能货柜内货品识别方法及装置、智能货柜》中服务器、终端设备和智能货柜之间的交互示意图;
图7是《智能货柜内货品识别方法及装置、智能货柜》应用实例中的智能货柜内货品识别方法的逻辑流程图;
图8是《智能货柜内货品识别方法及装置、智能货柜》实施例二中的一种智能货柜内货品识别系统的结构示意图;
图9是《智能货柜内货品识别方法及装置、智能货柜》实施例三中的一种电子设备的结构示意图;
图10是《智能货柜内货品识别方法及装置、智能货柜》实施例五中的一种智能货柜的结构示意图。
|
|
|
|
|
|
|
|
|
《智能货柜内货品识别方法及装置、智能货柜》提供一种智能货柜内货品识别方法及装置、智能货柜,能够对智能货柜内的货品进行准确且快速的识别,仅需将把货品分类摆放即可,无需核对数量,有效节省了人力成本。
《智能货柜内货品识别方法及装置、智能货柜》提供以下技术方案:第一方面,该发明提供一种智能货柜内货品识别方法,所述货品识别方法包括:接收目标智能货柜的货品识别指令;采集所述目标智能货柜的内部货品图像,并获取该目标智能货柜内各类货品的重量变化值,其中,所述内部货品图像中包含有当前目标智能货柜中的全部货品;以及,对所述内部货品图像进行图像识别,得到所述目标智能货柜中数量发生变化的各类货品的类型;根据所述目标智能货柜中发生变化的各类货品的类型和对应的重量变化值,确定所述目标智能货柜中数量发生变化的各类货品的数量。进一步地,所述智能货柜内货品识别方法还包括:基于所述目标智能货柜中发生变化的各类货品的类型和数量,更新该目标智能货柜的货品实时信息。进一步地,所述接收目标智能货柜的货品识别指令包括:接收针对所述目标智能货柜的用户身份识别信息或交易信息;向所述目标智能货柜发送柜门开启指令,使得所述目标智能货柜根据该柜门开启指令开启柜门的门锁;以及,接收所述目标智能货柜在柜门开启再关闭后发送的货品识别指令。进一步地,所述接收针对所述目标智能货柜的用户身份识别信息或交易信息,包括:接收用户通过用终端设备以扫描二维码的方式连接进入所述目标智能货柜对应的应用APP后,在该应用APP中发送的用户身份识别信息或交易信息;其中,所述二维码设置在所述目标智能货柜的外壁上。进一步地,所述接收针对所述目标智能货柜的用户身份识别信息或交易信息,包括:接收以人脸图像识别的方式获取的用户身份识别信息或交易信息;其中,所述人脸图像识别的方式包括:通过设置在所述目标智能货柜的外壁上的图像采集设备获取位于所述目标智能货柜外的用户的人脸图像,并对该人脸图像进行人脸图像识别。进一步地,所述采集所述目标智能货柜的内部货品图像,并获取该目标智能货柜内各类货品的重量变化值,包括:控制设置在所述目标智能货柜内的多个图像采集设备采集所述目标智能货柜的内部货品图像,其中,不同的图像采集设备用于采集所述目标智能货柜中不同货架上的货品图像,且全部货架上的货品图像组成所述内部货品图像;以及,控制分别设置在所述目标智能货柜中各个货架上的重量传感器采集各个货架上的货品的重量变化值,其中,同一货架上摆放同一类型的货品。进一步地,所述对所述内部货品图像进行图像识别,得到所述目标智能货柜中数量发生变化的各类货品的类型,包括:对所述内部货品图像进行图像识别,得到所述目标智能货柜中数量发生变化的货品的图像特征;以及,根据所述货品的图像特征和预设的货品图像特征库,确定所述目标智能货柜中数量发生变化的货品的类型;其中,所述货品图像特征库中存储有货品的类型和图像特征之间的对应关系。进一步地,所述根据所述目标智能货柜中数量发生变化的各类货品的类型和对应的重量变化值,确定所述目标智能货柜中数量发生变化的各类货品的数量,包括:根据所述目标智能货柜中数量发生变化的各类货品的类型和对应的重量变化值,以及,预获取的货品重量库,计算得到所述目标智能货柜中数量发生变化的各类货品的数量初值;以及,根据所述各类货品的数量初值确定所述目标智能货柜中数量发生变化的各类货品的数量;其中,所述货品重量库中存储有货品的类型和货品重量之间的对应关系。
进一步地,所述根据所述各类货品的数量初值确定所述目标智能货柜中数量发生变化的各类货品的数量,包括:若所述各类货品的数量初值为整数,则直接将该数量初值确定所述目标智能货柜中数量发生变化的各类货品的数量;若所述各类货品的数量初值为非整数,则根据所述数量初值的小数部分的数值确定所述目标智能货柜中数量发生变化的各类货品的数量。进一步地,所述根据所述数量初值的小数部分的数值确定所述目标智能货柜中数量发生变化的各类货品的数量,包括:判断所述数量初值的小数部分的数值是否处于允许误差范围内;若是,则将该数量初值进行四舍五入,并将四舍五入后的值确定所述目标智能货柜中数量发生变化的各类货品的数量;若否,则向用户的终端设备发送货品确认指令。进一步地,所述更新该目标智能货柜的货品实时信息,包括:在所述目标智能货柜对应的应用APP中更新该目标智能货柜的货品实时信息。进一步地,所述货品识别方法还包括:若检测获知所述目标智能货柜中的某类货品的数量低于对应的补货阈值,则向补货人员的终端设备发送补货告知信息。第二方面,《智能货柜内货品识别方法及装置、智能货柜》提供一种智能货柜内货品识别系统,所述货品识别系统包括:货品识别指令接收模块,用于接收目标智能货柜的货品识别指令;图像及重量采集模块,用于采集所述目标智能货柜的内部货品图像,并获取该目标智能货柜内各类货品的重量变化值,其中,所述内部货品图像中包含有当前目标智能货柜中的全部货品;增减货品类型识别模块,用于对所述内部货品图像进行图像识别,得到所述目标智能货柜中数量发生变化的货品的类型;增减货品数量识别模块,用于对所述内部货品图像进行图像识别,得到所述目标智能货柜中数量发生变化的各类货品的类型。第三方面,《智能货柜内货品识别方法及装置、智能货柜》提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现所述智能货柜内货品识别方法的步骤。第四方面,《智能货柜内货品识别方法及装置、智能货柜》提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现所述智能货柜内货品识别方法的步骤。第五方面,该发明提供一种智能货柜,所述智能货柜与所述的电子设备通信。
《智能货柜内货品识别方法及装置、智能货柜》提供的智能货柜内货品识别方法,通过接收目标智能货柜的货品识别指令;采集所述目标智能货柜的内部货品图像,并获取该目标智能货柜内各类货品的重量变化值,其中,所述内部货品图像中包含有当前目标智能货柜中的全部货品;以及对所述内部货品图像进行图像识别,得到所述目标智能货柜中数量发生变化的各类货品的类型;根据所述目标智能货柜中发生变化的各类货品的类型和对应的重量变化值,确定所述目标智能货柜中数量发生变化的各类货品的数量,能够对智能货柜内的货品进行准确且快速的识别,仅需将把货品分类摆放即可,无需核对数量,有效节省了人力成本,并提高了智能货柜的智能化程度和应用可靠性,故使得用户体验提高。
较流行的流型判别方法有 Baker、Brill、Beggs-Brill、Taitel、SCA(段塞特征分析法)等几种方法。经过算例的对比发现,每种判别方法都有其各自的适用范围。其中,Baker、Beggs-Brill 方法在进行流型判别时没有考虑管线倾角的影响,而且只是针对有限的实验介质进行的归纳总结,没有充分考虑气液物性对流型转变的影响。相比之下,Taitel 是近年来在数值计算中采用最为广泛的流型判别准则。由于 Taitel 准则是利用非粘性理论推导而来的,只能适用于低粘性流体。对于粘性不能忽略的石油工业,Taitel 判断准则的分层流范围过小。SCA 法从段塞流的稳定性机理出发,其中关于段塞流的经验公式涵盖了各种管径的管道,较为成熟,但其缺点在于,进行流型判别时将分散气泡流的范围设定的过大 。2100433B