选择特殊符号
选择搜索类型
请输入搜索
水轮发电机常识
1 / 9 水轮发电机 一、水轮发电机的主要作用 将水轮机旋转的机械能最终转换成电能, 其结构与性能的好坏对电站的安全、 稳定、 高效运行起着致关重要的作用。 二、水轮发电机的基本工作原理 在结构上水轮发电机是一种凸极式三相同步发电机, 其磁极一个个地挂在磁轭外圆 上并突出在外。由于水轮机的转速较低,要发出工频电能,相应的发电机的极数就比较 多,所以做成凸极式在结构工艺上就比较简单。发电机定子铁芯部分开有槽,槽内安放 三个绕组,代表三相定子绕组; 定子内部为转子, 主要由磁极、励磁绕组和转轴等组成。 将直流电流引进励磁绕组后将会建立磁场(改磁场对转子来说是恒定的) ,当水轮机拖 动发电机转子旋转时,旋转的转子磁场切割定子铁芯内的导线,在定子绕组中就会产生 三相感应电势,当电枢绕组与外界三相对称负载借同时,定子绕组内将产生交流电流。 三、水轮发电机组的型式 1、按布置方式分:可分为卧式和立
1 )通过理论分析推导了多馈入短路比及多馈入有效短路比,证明了两种短路比方法定义的一致性。
2 )证明了多馈入短路比包含了传统短路比的定义。传统短路比定义是多馈入短路比定义中的特例。
3 )推导了多馈入临界短路比的函数关系式,通过交直流系统的典型参数,得到多馈入临界短路比,提出了利用多馈入短路比判断多馈入交直流系统强弱的指标。
4 )证明了多馈入临界短路比与电压灵敏因子的等价关系,奠定了利用多馈入短路比分析电压稳定的基础。
5 )通过对弱交流系统的电压稳定、动态过电压及谐波谐振的理论分析和仿真研究,证明了提出的判断多馈入交直流系统强弱指标的有效性。因此,在规划中应避免直流特别是多馈入直流接入弱交流受端系统。
Kc是表征发电机静态稳定度的一个重要参数。Kc原来的意义是对应于空载额定电压的励磁电流下三相稳态短路时的短路电流与额定电流之比。由于短路特性是一条直线故Kc可表达为发电机空载额定电压时的励磁电流与三相稳态短路电流为额定值时的励磁电流。Xd是发电机运行中三相突然短路稳定时所表现出的电抗即发电机直轴同步电抗(不饱和值)。
如忽略磁饱和的影响则短路比与直轴同步电抗Xd互为倒数。短路比小说明同步电抗大相应短路时短路电流小但是运行中负载变化时发电机的电压变化较大且并联运行时发电机的稳定度较差即发电机的过载能力小电压变化率大影响电力系统的静态稳定和充电容量。短路比大则发电机过载能力大负载电流引起的端电压变化较小可提高发电机在系统运行中的静态稳定性。但Kc大使发电机励磁电流增大转子用铜量增大使制造成本增加。短路比主要根据电厂输电距离负荷变化情况等因数提出一般水轮发电机的K取0.9~1.3。结构上短路比近似的等于可见要使Kc增大须减小A即增大机组尺寸;或加大气隙须增加转子绕组安匝数。
通常将单馈入交直流系统中的交流系统用戴维南等值方法简化为一个理想电压源串联等值阻抗,以受端交流系统为例,如图1所示。
如果多回直流落点同一个交流受端系统,则用传统单馈入短路比的定义无法考虑各回直流间的相互影响。得到的结果则偏于乐观。
通过多端口戴维南等值方法 ,多馈入交直流系统可简化为图2所示的简化模型。
以两馈入交直流系统为例,系统模型如图3所示,比较 2 种极端情况下多馈入短路比和传统单馈入短路比的计算结果,可得出:
从以上 2 种极端情况的计算结果可看出,多馈入短路比的定义中包含了单馈入短路比,单馈入短路比的定义是多馈入短路比定义中的特例。
假设所要研究的直流电流 i 为定熄弧角控制,其它直流的电流不发生变化,且保持稳定运行。当直流电流 i 增加时,直流功率随之增加,当到某一点时,由于直流电压的下降程度大于直流电流的增加,直流功率开始下降,因此存在最大直流功率 。由此,多馈入交直流系统的最大直流功率 (multi-infeed maximum available power , MMAP) 满足
由于多馈入交直流系统随直流回路的增加,直流的稳态方程数目越庞大,若要通过解析方法得到
多馈入临界短路比的函数关系式比较困难,因而提出多馈入交直流系统的解耦模型,如图5所示。
以图 3所示的模型为例,定义 X 为状态向量,U 为控制向量: