选择特殊符号
选择搜索类型
请输入搜索
内径在10--250mm的炭化硅炉衬,用的碳化硅材质具有耐磨、耐腐蚀性好,导热率高,热膨胀
系数小,热稳定性好的特点。适合生产坩埚电炉,马弗炉及还原性气氛的各种炉膛、炉芯以及种种锻造行
业。如汽车、火车、拖拉机等机械锻造。根据需要进行设计和生产各种长度、各种形状(扁炉衬、方炉
衬)的炉衬。
碳化硅 SiC >99% 8000元/吨 以上 SiC <98% 3800-4200元/吨价格近期来不是很稳定,买卖都需慎重
最好的棕刚玉硬度是不是比碳化硅硬度会高一些。好的棕刚玉氧化铝含量能达到96,所以硬度很高,由于它们的生产原材料不同,所以硬度也有差别,棕刚玉的莫氏硬度9.0.,而碳化硅则可以达到9.5,所以棕刚玉不能...
回答尽可能用自己的语言组织,大量复制网络上已有的内容,答案将被删除并扣分。请一定对自己的回答负责,尽可能准确、详细和有效(1)作为磨料,可用来做磨具,如砂轮、油石、磨头、砂瓦类等。 &nb...
液态排渣炉燃烧室碳化硅耐火炉衬施工
详细介绍了德国KarrelitVE-90SiC耐火材料的性能及其在华能北京热电厂液态排渣锅炉上应用的施工工艺。
碳化硅生产新工艺,碳化硅制备加工配方设计,碳化硅技术专利全集
碳化硅生产新工艺与制备加工配方设计及技术专利全集 主编:国家专利局编写组 出版发行:中国知识出版社 2011年 规格:全四卷 16 开精装 +1张 CD光盘 定价: 1180元 优惠价: 680元 详细目录 1 200410030786.8 铝电解槽侧墙用氮化硅结合碳化硅耐火砖及其制 备方法 2 200410023747.5 一种向缸套铬层内部挤入碳化硅的方法 3 200410012271.5 一种制备碳化硅纳米纤维的方法 4 200410020538.5 黑色碳化硅冶炼降低单位耗料的工艺 5 200410026085.7 一种碳化硅发热元件冷端部的制造方法 6 200410026086.1 酚醛树脂作为结合剂的碳化硅陶瓷常温挤压成形 方法 7 02822412.4 大面积碳化硅器件及其制造方法 8 03125220.6 掺加助剂热压烧结块体钛碳化硅陶瓷材料的方法 9 03138926.0
堆砌炉衬又称叠砌炉衬,是将耐火纤维毯切成长方形,与炉壳面成直角叠砌,并用耐热钢钎穿入毯中,固定在炉壳仁。纤维毯被断的端部对齐成平面组成炉衬热面,由毯一r的宽面构成炉衬厚度。为避兔在过程中因纤维毯l均热收缩而形成从热面至冷面的热流通道,可采用预压缩安装,压缩率一般为25%,以提高纤维炉衬的整体强度并抵消应用过程中的收缩。
堆砌炉衬主要优点
(1)金属锚固装置位立冷血,而不是暴露于火焰中。!呵时受热过程中纤维的劣化仪发生在热面端部,而不是沿整块纤维毯面积方向同时劣化。因此,堆砌炉衬一般比同种纤维材料的层铺炉衬使用温度提高50~100℃。
(2)堆砌炉衬的抗剥落性和抗风蚀性层铺炉衬。
堆砌炉衬的主要缺点是不能按炉衬的温度分布选用不同的纤维材料,因此筑炉成本高。
贴面炉衬是在业已砌筑的耐火砖、浇注耐火材料、可塑料等炉衬_仁再镶贴一层耐火纤维炉衬。这种设计用于旧炉墙的改造能起到明显的节能效果。纤维贴面的固定可采用双头螺栓锚固法,也可采用耐火胶泥粘贴法,笔者倾向于二种方法并用。
炉衬侵蚀监测技术
炉衬侵蚀监测技术主要包括测量元件和计算机监测系统两部分。测量元件由电阻测厚元件与热电偶测温元件构成。测量方法是在高炉炉衬内沿垂直炉衬的方向埋设测量元件,元件前端与炉衬内表面相齐,元件通过引线与计算机系统连接。测量元件的电阻值与其长度相关。在高炉生产过程中,电阻元件与炉衬同步被侵蚀,元件长度上的变化将引起电阻值的变化,因而输出信号也相应变化。计算机在线连续监测这一信号,进行计算、处理及综合判断可得知该处炉衬的现存厚度及变化情况。通过对埋设在炉衬各部位测量元件输出信号的监测,可在CRT上直观地显示出高炉的实际内型剖面图和测量数据,以及炉衬各部位测量点处的厚度温度变化趋势,通过打印机可打印数据报表和图形拷贝。
关键技术
①该项技术测量方法简单,测量元件具备两个特点:元件与炉衬同步损耗,元件电阻值与元件长度成函数关系。
②测量元件为铠装型,结构合理、全密封、耐腐蚀、防水、防尘、安装方便。能较正确反映炉衬厚度的变化,测厚分辨率为30毫米。元件制作定型化和规格化。
③计算机监测系统为上、下2级工业计算机,采用光电隔离技术及信号隔离电路,抗干扰能力强,系统在线连续运行,稳定可靠。
④实现了高分辨串图像处理、图形显示和图形拷贝等功能。
⑤实现了不同总线间计算机与计算机,计算机与打印机之间远距离串行通讯。
技术经济指标
①测厚测温元件定型化、规格化,可批量制造。
②砖衬测厚分辨率 -30mm,冷却壁本体损耗测量分辨率 -20mm,测温精度1.5%。
③计算机系统在线运行率97%以上。
④监测系统的使用完好率80%。我国大型高炉40多座,中小高炉不计其数,600立方米以上高炉就有60多座,高炉采用该测厚技术,由于用计算机在线连续监测,操作人员能随时掌握炉衬侵蚀状况,从而采取相应的保护措施,延长高炉寿命;由于跟踪及时,可避免突发事故,对高炉安全生产和长寿有很大的经济效益和社会效益。新建或大修一座高炉,投资在10亿元左右,寿命按8年计算(国内高炉为5年左右),高炉延长寿命一个月,节约投资1041万元;延长高炉寿命,多出铁,一个月产生的直接经济效益为:1吨铁效益×高炉日产×30。以宝钢高炉为例,高炉延长一个月寿命,炉衬测厚技术的效益为112.04万元,3个月便是336.12万元。从防止突发事故来看,避免重大事故造成的巨额经济损失和安全生产带来的社会效益是无法估算的。该项技术不仅可应用于各种容积的高炉,还可在炼钢炉、铁水罐、冲天炉、玻璃窑等其它工业炉窑中应用,有广阔的应用前景,如有条件还可推向国际市场。我国炼铁生产以高炉为主,高炉安全生产、稳产长寿必须依靠先进技术,该成果正是达到这一目标的技术措施之一。通过“八五”科技攻关,该技术已比较成熟,并已将攻关阶段成果逐步在宝钢高炉、本钢高炉及武钢高炉上应用,取得了初步成效。