选择特殊符号
选择搜索类型
请输入搜索
铁心电感器线圈中通以交流电流后,所产生的磁通分为两部分: 一部分是通过铁心磁 路(包括在铁心磁路中插入非磁性气隙) 的主磁通,另一部分是通过线圈与铁心柱间空隙 的漏磁通。根据电感的基本定义,我们将主磁通产生的电感称为主电感
铁心电感器铁心中无气隙时,其漏电感可忽略不计,电感量按下式计算
N——线圈匝数;
铁心交流磁导率
由此可见,正确地确定铁心的磁导率是电感计算的基础。
交流磁导率
铁心电感器中有气隙时,当忽略其漏电感,其电感量按下式计算
当
当
考虑气隙磁通扩散后,气隙导磁面积
此时,在按式(3)计算电感或按式(5)计算有效磁导率时,将
当
1. 当忽略漏电感时的电感计算
2. 考虑漏电感影响时的电感计算
当漏电感不能忽略时,必须按以下公式计算漏电感
(1) 壳式或单线圈心式铁心电感器(图4) 漏电感按下式计算
N——电感器线圈匝数;
洛氏系数
线圈漏磁等效面积
(2) 双线圈式铁心电感器(图5) 漏电感按下式计算
式中,
铁心电感器的主电感
铁心电感器的电感L为
电源滤波扼流圈用于平滑整流后的直流成分,减小其波纹电压,以满足电子设备对直流电源的要求。
电源滤波扼流圈的主要技术指标为: 电感量、直流电压降。电感量由所要求的波纹系数,在进行整流器和滤波器计算时确定;直流电压降影响整流器输出电压和负载调整率。
通过电源滤波扼流圈线圈的电流包括直流和交流两部分,并以直流电流为主要成分。在扼流圈铁心中存在着交直流两种磁化场,其中直流分量是主要部分。
根据滤波器的种类,电源滤波扼流圈可分为电感输入式和电容输入式两种。电感输入式滤波扼流圈具有较高的波纹电压,铁心中交流磁感应强度一般在0.1T以上;电容输入式滤波扼流圈具有较低的波纹电压,铁心中交流磁感应强度一般在0.1T以下。
电源滤波扼流圈的电感量随着直流磁化电流的增加而降低,这是由于随着直流磁化电 流的增大,铁心越来越达到饱和状态。在扼流圈铁心磁路中引入非磁性间隙可以减小电感 随直流磁化电流增大而产生的下降量,对应于给定的直流磁化电流,具有一个最佳的非磁性间隙,相应于这个最佳间隙,电源滤波扼流圈可获得最大的电感值。
交流扼流圈用于交流回路中,作为平衡、镇流、限流和滤波等感性元件来使用。
交流扼流圈工作于交流状态,无直流磁化,类似于单线圈变压器。其电磁过程与变压 器的区别是: 在变压器铁心中的磁感应强度的确定取决于外施电压,与实际的负载电流无 关;对大多数交流扼流圈来说,铁心中磁感应强度的确定取决于负载电流,而与电路的外施电压无关。
交流扼流圈的电感量随交流磁场的变化而变化,而且是非线性的,只有在铁心未达到饱和时,变化才近似线性,这时,电感随交流磁场的增大而增大。在交流扼流圈铁心中插入非磁性间隙将减小其电感量,但电感随磁场的变化量也同时减小,因此变化非磁性间隙 的大小可调节电感值。当铁心中非磁性间隙增大至一定值时,在磁场变化时,电感将基本保持不变,这时的交流扼流圈将具有线性的伏安特性。大多数交流扼流圈都具有接近于线 性的伏安特性。
交流扼流圈的主要技术指标是,在某一交流电流 (固定的或有一定变化范围的)作用 下的电感值。对某些工作于高频的交流扼流圈,品质因数Q也是一个重要的技术指标。
电感线圈多数用于高频电路中,如滤波器用电感线圈,振荡回路电感线圈,陷波器线圈,高频扼流圈,匹配线圈,噪声滤波线圈等。多数电感线圈工作于交流状态,因此,它 属于交流扼流圈范畴,是交流扼流圈的一个分支。
电感线圈的铁心以铁氧体磁芯使用最多,也有采用钼坡莫粉末磁芯,铁粉芯,铝硅铁粉芯,非晶或超微晶粉末磁芯及精密软磁合金等。
电感线圈的主要技术指标为电感量和品质因数。在某些场合,对电感的温度稳定性也 有一定的要求。
饱和扼流圈用于稳定和调压线路中,通过调节电路中的感抗来达到稳定或调节电压的 目的。饱和扼流圈至少有两个绕组,一个绕组(工作绕组) 接入调节交流电路,另一个绕 组(控制绕组) 接入直流电路。和电源滤波扼流圈及交流扼流圈不同,饱和扼流圈铁心应 是无气隙的。
饱和扼流圈铁心中存在着交直流两种磁化状态,而且交流成分很大,由于铁心磁化曲 线的非线性,工作绕组中电流波形是失真的,这在接近铁心饱和时特别明显。
饱和扼流圈的主要技术指标是: 电感量调节范围或输出电压调节范围,负载功率的最 大值与最小值,控制电流(功率) 的最大值与最小值,功率因数最小值等。
由于可控硅调压装置、磁性调压器、可调稳压变压器的技术发展,饱和扼流圈应用范 围逐步缩小,只有在大功率或特殊要求场合才使用,为此,本手册将不加详述 。
有多种测量办法,比如初级这段线电压乘以初级电流得到初级功率减去次级功率即可。
铁心是整个变压器的机械骨架,铁心的另一个更重要的作用是,提供磁回路。绕组通电以后产生磁场,磁力线经过铁心构成磁回路,增强和引导磁通量,使整个磁路的磁场强度达到最大,避免漏磁损耗。拓展资料铁芯是变压器中...
以前好像有,现在不知道了。你去问问吧
纳米晶铁心测量级电流互感器
纳米晶铁心测量级电流互感器
三维立体卷铁心节能配电变压器铁心分析
通过对三维立体卷铁心变压器与传统平面式迭片式铁心变压器磁路结构及特点的分析,论述了三维立体卷铁心技术经济性能,证实了三维立体卷铁心变压器优越的节能特点及应用前景。
早在上个世纪四、五十年代,国外率先研制单相卷铁心变压器。前苏联莫斯科变压器厂最先在小容量单向变压器中采用卷铁心结构,美国、日本也研发了小型R型卷铁心变压器运用在游戏机中。我国在20世纪60年代开始研制卷铁心变压器,限于当时材料和技术的原因,生产厂家和产品很少。到了20世纪80年代后期,国内的一些厂家才开始生产卷铁心变压器,作为全国领先的沈变、天威保变等公司在卷铁心变压器的研发投入了较大精力,发展到现在,全国现有卷铁心变压器生产厂200多家,形成一定的生产能力的厂家约占总数的20%。
在我国,卷铁心在变压器运用最广泛的方向是农村配电网中的配电变压器,我国农村人口众多,农村电网投入大,卷铁心结构以其低空载损耗的优势带来节能效益不可估量。卷铁心变压器是由硅钢片卷绕而成,由最开始的单相卷铁心发展到后来的立体三相卷铁心,结构也越来越复杂多样 。
铁心和绕组是变压器的核心结构,是变压器的电磁耦合的关键,决定了变压器的基本性能,所以首先确立铁心和绕组的结构就大体确立了整个变压器的框架。
AT供自耦变压器是用在牵引供电系统中的一种特殊的单相变压器。自耦变压器与普通电力变压器的区别是一、二次绕组之间除了有磁的耦合外,还有电的直接联系。正因为如此,在传输容量相同的条件下,自耦变压器与普通的电力变压器相比,尺寸更小,效率更高。
AT供单相自耦变压器绕组电路连接关系如图2-1所示,其中AB绕组是串联绕组;CD绕组是为高压侧和低压侧共有的,通常称为公共绕组 。
(1)铁心结构及尺寸
1) 铁心结构选择
AT自耦变压器是单相变压器,这种大容量的单相变压器的铁心一般采用单相双框式或者是单相单框式。单相双框式结构铁心、绕组及油道设置如图2-2所示,两个部分的铁心独立绕制;单相单框式结构铁心、绕组及油道设置如图2-3所示。其各自的优势劣势如下:
单相双框式铁心
优势:绝缘垫块、压块结构简单; 运输方便
劣势:拼合难度大;线圈高度高,加上端部绝缘部分,圈制造造成困难;抗短路能力较弱
单相单框式铁心
优势:抗短路能力强;绕组分散,利于散热
劣势:线圈绕制的工作量翻倍;对线引线更复杂
综合考虑两种铁心结构优缺点,尤其是单相单框式结构在抗短路能力上的优势,采用单相单框式铁心结构。
2) 铁心直径
铁心直径选取是否合理,将直接影响变压器的材料消耗、变压器重量、体积、成本、运输及主要性能指标。如果铁心直径选取过大时,变压器的重量将会增加,空载损耗增加,这样运输成本也会增加,变压器的外形也更加矮胖,而导线重和负载损耗会减小。如果变压器铁心直径选取过小,会得到相反的结果。
3)铁心材料
铁心作为变压器的骨架和导磁构件,其性能至关重要,而变压器铁心的性能又主要是由其材料所决定。为使变压器性能达到要求,铁心材料必须满足两点要求:
第一,材料要有较高的磁导率,这样在同样的磁通密度下,传导的磁通量就大,所需的铁心材料就少,变压器铁心的体积和重量也较小,相对而言可节省硅钢片、铜线和绝缘材料,方便运输节省成本;
第二,材料的单位损耗要低,变压器的空载损耗是由铁心的材料所决定的,单位损耗越低,相应的空载损耗就越低,同时损耗产生的温升也降低,对变压器的性能就有显著提升。目前,变压器铁心材料多使用硅钢片,而硅钢片按生产工艺分为冷轧硅钢片和热轧硅钢片,冷轧硅钢片又分为晶粒有取向和晶粒无取向硅钢片,不同硅钢片材料的特点和性能如表2.3所示。
经过上表中的硅钢片的性能比较,虽然工艺相对较复杂,但冷轧硅钢片在损耗方面具有较大优势,采用取向高导磁硅钢片 。
(2)加工工艺
由于卷铁心的结构和叠铁心结构的区别,所以卷铁心的制造过程同叠铁心相比也有本质的不同。叠铁心和卷铁心的基础材料都是硅钢片,叠铁心通过不同大小的硅钢片堆叠而成,卷铁心通过集中宽度不同的硅钢片卷绕而成。按铁心层内有无接缝,卷铁心又分为切断和不切断两种结构。其中切断结构多用于柱截面为矩形或者是椭圆形的铁心,适用于三相五柱式铁心;不切断结构铁心柱截面为正圆形或者R形,多用于单柱式或双柱式铁心。本文中的自耦变压器结构采用单柱式结构,卷铁心采用不切断及无接缝结构,其卷绕过程是连续的,整个铁心的磁化方向与硅钢片的轧制方向也一致,磁路各路磁通分布均匀。理想退火情况下,单相卷铁心的工艺系数可以达到1.02,励磁电流相对于叠铁心可以降低75%左右。
卷铁心的制造过程可分为如下几个部分:
1)纵剪开料
按照设计要求纵剪合适宽度后,在折线开料机上开料。开料机在调试使用当中可能出现料带跑偏、料带卷边、料带毛刺,送收料同步、刀头微动精度等问题。
2)卷绕
将心模板安装在支撑轴上,绕后将开好的料带按照设计图纸逐条卷绕在心模板上。卷绕过程中要解决平面齐整度、料带导向、张力控制、卷绕锁制、心模脱卸等诸多问题。
3)卸料翻转
铁心重量重达好几吨,需要设计工装解决铁心重量从支撑轴转移并翻转问题。
4)退火
退火工艺曲线关乎退火成败,正空度、温升速度、分几个阶段升温、保温温度、保温时间、降温速度、充氮气时刻等多个参数都举足轻重。真空度不够,硅钢片表面将被氧化,升温速度过快硅钢片将产生应变,铁心变形,退火效果大打折扣,升温速度过慢则浪费能源增加费用,保温时间类同。
5)铁心拼装
将两半铁心拼合,中间设置油道,安装铁心拉板及夹件,安装支撑的木件,并用绿绑带捆扎为一体 。
变压器绕组结构大体上可以分为两类,层式绕组和饼式绕组。层式绕组又称为圆筒式绕组,其中应用最为广泛的是双层及多层圆筒式绕组,其结构简单,常用于35kV及以下的中小型油浸式变压器,构成整个绕组的材料及零部件有导线、厚纸筒、端绝缘、层绝缘、油道支撑、静电屏。虽然其制作简单,工艺性好,但端部支撑的稳定性不好,所有层式绕组,尤其是多层式绕组的雷电冲击性能好,在超高压变压器领域有所应用,但它的广泛应用受制于其轴向支撑的稳定性较差。饼式绕组包括连续式、纠结式、内屏蔽式、螺旋式以及更加复杂的交错式绕组,饼式绕组机械强度高,散热性好,在目前得到广泛的使用,其中的纠结式绕组和内屏蔽式绕组,可以增加绕组的纵向电容,改善绕组冲击电压的分布,冲击特性较好,适用于高电压等级的变压器。综合分析两种绕组结构,采用饼式绕组结构。
短路阻抗是变压器设计计算中的一个十分重要的参数,它的大小涉及到变压器的成本、效率、电压变化率、机械强度、短路电流大小等。对于大型变压器,短路阻抗的电阻分量所占的比重很小,所以短路阻抗的大小就由其电抗分量所决定。短路电抗主要由变压器的绕组布置方式、绕组连接方式所决定,而不同的绕组布置方式又决定了变压器的漏磁大小及分布规律,所以可以说短路电抗是由变压器的漏磁场大小及分布规律所决定的 。
电感器一般由骨架、绕组、屏蔽罩、封装材料、磁心或铁心等组成。
1、骨架 骨架泛指绕制线圈的支架。一些体积较大的固定式电感器或可调式电感器(如振荡线圈、阻流圈等),大多数是将漆包线(或纱包线)环绕在骨架上,再将磁心或铜心、铁心等装入骨架的内腔,以提高其电感量。骨架通常是采用塑料、胶木、陶瓷制成,根据实际需要可以制成不同的形状。小型电感器(例如色码电感器)一般不使用骨架,而是直接将漆包线绕在磁心上。空心电感器(也称脱胎线圈或空心线圈,多用于高频电路中)不用磁心、骨架和屏蔽罩等,而是先在模具上绕好后再脱去模具,并将线圈各圈之间拉开一定距离。
2、绕组 绕组是指具有规定功能的一组线圈,它是电感器的基本组成部分。绕组有单层和多层之分。单层绕组又有密绕(绕制时导线一圈挨一圈)和间绕(绕制时每圈导线之间均隔一定的距离)两种形式;多层绕组有分层平绕、乱绕、蜂房式绕法等多种。
3、磁心与磁棒 磁心与磁棒一般采用镍锌铁氧体(NX系列)或锰锌铁氧体(MX系列)等材料,它有“工”字形、柱形、帽形、“E”形、罐形等多种形状。
4、铁心 铁心材料主要有硅钢片、坡莫合金等,其外形多为“E”型。
5、屏蔽罩 为避免有些电感器在工作时产生的磁场影响其它电路及元器件正常工作,就为其增加了金属屏幕罩(例如半导体收音机的振荡线圈等)。采用屏蔽罩的电感器,会增加线圈的损耗,使Q值降低。
6、封装材料 有些电感器(如色码电感器、色环电感器等)绕制好后,用封装材料将线圈和磁心等密封起来。封装材料采用塑料或环氧树脂等。
铜线圈
电感是导线内通过交流电流时,在导线的内部周围产生交变磁通,导线的磁通量与生产此磁通的电流之比。当电感中通过直流电流时,其周围只呈现固定的磁力线,不随时间而变化;
可是当在线圈中通过交流电流时,其周围将呈现出随时间而变化的磁力线。根据法拉第电磁感应定律—磁生电来分析,变化的磁力线在线圈两端会产生感应电势,此感应电势相当于一个“新电源”。当形成闭合回路时,此感应电势就要产生感应电流。由楞次定律知道感应电流所产生的磁力线总量要力图阻止磁力线的变化的。磁力线变化来源于外加交变电源的变化,故从客观效果看,电感线圈有阻止交流电路中电流变化的特性。电感线圈有与力学中的惯性相类似的特性,在电学上取名为“自感应”,通常在拉开闸刀开关或接通闸刀开关的瞬间,会发生火花,这自感现象产生很高的感应电势所造成的。
总之,当电感线圈接到交流电源上时,线圈内部的磁力线将随电流的交变而时刻在变化着,致使线圈产生电磁感应。这种因线圈本身电流的变化而产生的电动势,称为“自感电动势”。由此可见,电感量只是一个与线圈的圈数、大小形状和介质有关的一个参量,它是电感线圈惯性的量度而与外加电流无关。
代换原则:1、电感线圈必须原值代换(匝数相等,大小相同)。2、贴片电感只须大小相同即可,还可用0欧电阻或导线代换。