选择特殊符号
选择搜索类型
请输入搜索
土壤中的石膏 石膏的含量和有无石膏沉积层,可作为划分土壤类型的指标之一,也可为防治碱土确定石膏施用量提供参考。其分析方法有硫酸钡重量法、联苯胺法、四羟基醌法、铬酸钡容量法和硫酸钡比浊法等。
土壤养分 测定土壤及作物体内氮、 磷、 钾含量,可及时了解土壤及作物养分丰缺情况、各种技术措施对土壤和作物养分的影响,作为水肥管理的依据。全氮量分析方法有开氏法、重铬酸钾-硫酸硝化法等。全磷量分析方法有氢氧化钠碱熔-钼锑抗比色法等。全钾量分析方法有火焰光度计法、四苯硼钠重量法等。
土壤有机质 土壤有机质直接影响土壤保肥性、保墒性、缓冲性、耕性、通气状况和土壤温度等。它是土壤肥力高低的重要指标之一,是评价灌区土地分级的重要依据。其分析方法多采用重铬酸钾-硫酸氧化法。
土壤中的碳酸钙 对石灰性土壤,通常以碳酸钙在剖面中的淋溶移动及淀积状况,作为判断土壤形成发展和肥力特征的指标之一。其测定方法有气量法和扩散吸收法。
土壤交换性能 土壤表面吸附的阳离子可以被土壤溶液中别的阳离子所取代的性能。测定土壤交换性能,了解土壤盐基饱和的程度,可作为土壤的保水保肥能力,以及土壤分类和土壤改良的依据。
离子交换总量(阳离子交换量)土壤物理化学吸附的阳离子总量。其分析方法有:醋酸铵法,适用于中性或酸性土壤;EDTA(乙二胺四乙酸)-铵盐快速法;氯化铵-醋酸铵法,只适用于石灰性土壤。
水解性总酸度 包括活性酸、交换性氢铝和可水解性酸的总和。它代表微酸性和酸性土壤的总酸度,是计算石灰用量的重要依据。其分析方法有醋酸钠水解-中和滴定法。
交换性酸 即交换性氢离子和交换性铝离子。当交换性铝离子大量存在时,可使植物根系营养条件变坏,损害植物生长和微生物活动。测定交换性酸是施用石灰(或磷灰石)和有机肥料改良土壤的依据。其分析方法有氯化钾交换-中和滴定法。
交换性盐基(交换性阳离子) 交换性钙、镁分析方法有EDTA(乙二胺四乙酸)容量法、原子吸收光谱法。交换性钾钠分析方法有容量法和钠电极法。
土壤碱化度 碱化度是判断土壤碱化的重要指标。当土壤交换性盐基中交换性钠大于5%时为碱化土,超过20%时为碱土。
石灰需用率 施用石灰是改良酸性土壤的重要措施之一。石灰需用率(以 CaO毫克当量100g土为单位)的测定,多采用中和滴定法。根据石灰需用率、阳离子交换量和水解性总酸度等即可计算出石灰需用量。
对土壤发生化学反应时才表现出来的性质进行的测量、计算和判定。对植物生长的土壤化学环境特性的分析,为改良土壤、提高肥力、补充作物所需的营养元素提供依据。
土壤pH值 表示土壤酸、碱性的指标,以土壤浸堤液中氢离子浓度负对数来表示。pH值等于7为中性,大于7为碱性,小于7为酸性。其分析方法有:混合指示剂比色法、永久色阶比色法(适合野外使用)、电位滴定法等。
土壤可溶性盐 土壤中所含的水溶性盐分。了解土壤可溶性盐含量,是进行盐碱土分类、作物种植、防治土壤盐碱化、采取灌溉排水措施等所必不可少的依据。
土壤总盐量 从一定比例(一般采用 5:1)的水和土(风干土)中,在一定时间内浸提出来的可溶性盐分总量。亦可用压榨法直接抽取土壤溶液进行分析。总盐量的单位可用相当土重量的百分数表示,也可用电导度单位表示。供试溶液最好采用饱和浸提液。总盐量的测定方法有:重量法、电导法、比重计法、阴阳离子计算法。
可溶性阳离子和阴离子 土壤盐分中常有八种阴阳离子,即HCO婣、CO卲、 CI、SO厈、K、Na、Ca、Mg。盐分组成及这些离子间的比例关系,可资鉴别盐碱土的类型,并确定相应的改良措施。这些离子的不同组合对作物一般都有危害作用,尤以NaCO毒性最大。钠盐较多的土壤,在进行冲洗时,还可能使土壤碱化,所以钠离子是土壤和水中主要监测的离子。其分析方法有火焰光度计法、离子摄谱法、钠电极法、差减法。氯离子分析法有硝酸银滴定法、氯电极离子活度计法等。硫酸根离子分析法有四羟基醌法、联苯胺法等。碳酸根、重碳酸根离子的分析法有双指示剂滴定法和电位滴定法等。
玻璃胶,是一种家庭常用的黏合剂,主要成分为硅酸钠(Na2O·mSiO2)和醋酸以及有机性的硅酮组成。硅酸钠易溶于水,有粘性,南方也称水玻璃,北方也称泡花碱。介绍玻璃胶是将各种玻璃与其它基材进行粘接和密...
pH值:3.45(10%溶液) 1、与还原剂、有机物、易燃物如硫、磷或金属粉末等混合可形成爆炸性混合物,经摩擦、震动或撞击可引起燃烧或爆炸。2、重铵是光敏物质,曝光后能还原成三价铬。是强氧化剂,与有...
可溶于而生成锂。 急性毒性:LD50:200 mg/kg(豚鼠经口)。具刺激性。吸入、摄入或经皮吸收会中毒。大剂量可引起眩晕、虚脱。对有损害。 该品有毒,吸入或与皮肤接触时有毒害。对水是稍微危害的,若...
不同林分类型对林下土壤化学性质的影响
以辽宁北票地区的油松纯林和油松+山杏混交林为研究对象,分析两种林分类型对林下土壤化学性质的影响。结果表明:混交林对土壤p H值和有机质含量提升显著,可提高土壤质量。混交林在碱解氮和有效磷方面有较好的提升效果。
海南乐东3种不同森林类型样地土壤化学性质分析
[目的]了解海南乐东县木麻黄纯林、大叶相思林和桉树林3个不同森林样地土壤化学性质的特征和变化。[方法]以海南乐东县3个不同森林类型土壌为研究对象,分析了不同森林类型土壤层化学性质,并进行比较分析。[结果]3种森林类型土壤p H为5.17~6.99,森林有机质含量为0.64~10.69 g/kg,全氮含量为0.03~0.70 g/kg,全磷含量为0.01~0.03 g/kg,全钾含量为0.88~4.29 g/kg,有效磷含量为1.29~12.38 mg/kg,速效钾含量为2.17~32.79 mg/kg,硝态氮含量为0.18~6.82 mg/kg,铵态氮含量为0.91~8.56 mg/kg。[结论]该研究为乐东县人工林经营的可持续性提供参考。
土壤是由固体、液体、气体三相共同组成的复杂的多相体系。土壤固相包括矿物质、有机质和土壤生物;在固相物质之间为形状和大小不同的孔隙。孔隙中存在水分和空气。
土壤以固体为主,三相共存。三相物质的相对含量,因土壤种类和环境条件而异。三相物质互相联系、制约,并且上与大气,下与地下水相连,构成一个完整的多介质多界面体系。
土壤矿物质是岩石经过物理风化和化学风化形成的。按其成因类型可将土壤矿物质分为两类:
一类是原生矿物,它们是各种岩石(主要是岩浆岩)受到程度不同的物理风化而未经化学风化而形成,其原来的化学组成和结晶构造都没有改变,仅改变其形状为沙粒和粉沙粒;
另一类是次生矿物,它们大多数是由原生矿物经化学风化后形成的新矿物,其化学组成和晶体结构都有所改变。
在土壤形成过程中,原生矿物以不同的数量与次生矿物混合成为土壤矿物质。
1.原生矿物
原生矿物主要有石英、长石类、云母类、辉石、角闪石、橄榄石、赤铁矿、磁铁矿、磷灰石、黄铁矿等。
2.次生矿物
土壤中次生矿物的种类很多,不同的土壤所含的次生矿物的种类和数量也不尽相同。通常根据性质与结构可分为三类:简单盐类、三氧化物和次生铝硅酸盐类。如方解石(CaCO3)、白云石[Ca、Mg(CO3) 2] 、石膏(CaSO4·2H2O)、褐铁矿(2Fe2O3·3H2O和高岭石等。
土壤有机质是土壤中含碳有机物的总称。由进入土壤的植物、动物及微生物残体经分解转化逐渐形成。通常可分为两大类:一类为非腐殖物质,包括糖类化合物(淀粉、纤维素、半纤维素、果胶质等)、树脂、脂肪、单宁、蜡质、蛋白质和其他含氮化合物,它们都是组成有机体的各种有机化合物,一般占土壤有机质总量的10% ~ 15%;另一类是腐殖物质,是由植物残体中稳定性较大的木质素及其类似物,在微生物作用下,部分地被氧化而增强反应活性形成的一类特殊的有机物,它不属于有机化学中现有的任何一类。
土壤水分是土壤的重要组成部分,主要来自大气降水和灌溉。在地下水位接近地面(2~3m)的情况下,地下水也是上层土壤水分的重要来源。此外,空气中水蒸气遇冷凝成为土壤水分。
土壤水分并非纯水,实际上是土壤中各种成分和污染物溶解形成的溶液,即土壤溶液。因此土壤水分既是植物养分的主要来源,也是进入土壤的各种污染物向其它环境圈层(如水圈、生物圈等)迁移的媒介。
土壤空气存在于未被水分占据的土壤空隙中。土壤空气组成与大气基本相似,主要成分都是N2、O2、CO2。
土壤分析对土壤学的发展有很大影响。早在19世纪中叶,德国化学家J.von李比希将经典的化学方法应用于土壤和植物分析,根据测得的结果,提出了植物矿质营养学说和归还学说,大大推进了土壤学的发展。在其后的100多年间,土壤分析的方法日益增多。至20世纪50年代末,许多自动化、半自动化分析仪器陆续应用于土壤分析。各种化学的和物理的传感器以及电子计算机和遥测装置也已逐步应用,土壤分析正步入一个新的发展时期。 2100433B
主要是测定土壤的各种化学成分的含量和某些性质。常见的测定项目有:土壤矿质全量测定(即测定硅、铝、铁、锰、钛、磷、钾、钠、钙、镁的含量),土壤活性硅、铝、铁、锰含量测定,土壤全氮、全磷和全钾含量的测定,土壤有效养分(铵态氮、硝态氮、有效磷和钾)含量测定,土壤微量元素含量和有效性微量元素(铁、硼、锰、铜、锌和钼)含量测定,土壤有机质含量测定,以及土壤酸碱度、土壤阳离子交换量、土壤交换性盐基的组成的测定等。其中土壤矿质全量、有机质含量、全氮量、有效养分含量、土壤酸碱度、阳离子交换量和交换性盐基组成等是必须进行测定的项目,故称土壤常规分析。其他测定项目则可根据分析目的取舍。20世纪30~40年代兴起的土壤测试,也可列入土壤化学分析范畴。
土壤化学分析方法很多,经典的方法有重量法、容量法和比色法。现代实验室多采用自动化、半自动化仪器进行土壤常规分析。这种实验室通常由4个系统组成:①样品半自动粉碎系统;②样品半自动提取系统;③由自动分析仪或流动注射分析仪、原子吸收/火焰发射光谱仪、pH自动分析仪和碳氮自动分析仪等组成的自动分析系统;④中央数据处理系统。土壤矿质全量分析常用能量色散 X射线能谱法或带电粒子活化分析仪或中子活化分析仪进行。采用此法,土壤样品无需经任何处理即可直接测定,从而避免了因化学处理而造成土壤样品中成分的损失或杂质的掺入及对土壤样品的稀释作用等缺陷。
主要测定土壤中物质存在状态、运动形式以及能量的转移等。常见的测定项目有:土壤含水量、土水势、饱和和非饱和导水度、水分常数、土壤渗漏速度、土壤机械组成、土壤比重和土壤容重、土壤孔隙度、土壤结构和微团聚体、土壤结持度、土壤膨胀与收缩、土壤空气组成和呼吸强度、土壤温度和导热率、土壤机械强度、土壤承载量和应力分布以及土壤电磁性等。
土壤物理分析除经典方法外,多借助现代化仪器进行,如应用水银注入测孔仪测定土壤结构(孔径可小至5纳米);应用磨片、光学技术及扫描电镜测定土壤结构的微域变化;应用带有电子计算机的中子-γ射线联用仪在田间直接测定土壤水分和土壤比重;应用气相色谱仪和三轴剪力仪分别测定土壤空气组成和土壤力学性质等。此外,各种型号的测温、测磁仪和土壤颗粒自动分析记录仪也为土壤物理分析提供了简捷而又精确的测试手段。