选择特殊符号

选择搜索类型

热门搜索

首页 > 百科 > 电气百科

调谐放大器​简介

调谐放大器​简介

以电容器和电感器组成的回路为负载,增益和负载阻抗随频率而变 的放大电路。这种回路通常被调谐到待放大信号的中心频率上。由于调谐回路的并联谐振阻抗在谐振频率附近的数值很大,放大器可得到很大的电压增益。而在偏离谐振点较远的频率上,回路阻抗下降很快,使放大器增益迅速减小;因而调谐放大器通常是一种增益高和频率选择性好的窄带放大器。

查看详情

调谐放大器造价信息

  • 市场价
  • 信息价
  • 询价

信号放大器

  • TX3920
  • 13%
  • 深圳市泰和安科技有限公司
  • 2022-12-06
查看价格

放大器

  • DL-ZJQ-485-1(,DC24V)
  • 德洛斯
  • 13%
  • 广东德洛斯照明工业有限公司
  • 2022-12-06
查看价格

放大器

  • 品种:信号放大器;型号:DMX521;
  • 万润照明
  • 13%
  • 广东中筑天佑美学灯光有限公司
  • 2022-12-06
查看价格

放大器

  • 品种:信号放大器;型号:DMX512;
  • 万润照明
  • 13%
  • 广东中筑天佑美学灯光有限公司
  • 2022-12-06
查看价格

放大器

  • 品种:信号放大器;型号:DMX512;
  • 新锐极光
  • 13%
  • 广东中筑天佑美学灯光有限公司
  • 2022-12-06
查看价格

拉曼放大器(RAMAN)

  • 广东2021年2季度信息价
  • 电网工程
查看价格

拉曼放大器(RAMAN)

  • 广东2020年2季度信息价
  • 电网工程
查看价格

拉曼放大器(RAMAN)

  • 广东2019年4季度信息价
  • 电网工程
查看价格

拉曼放大器(RAMAN)

  • 广东2022年3季度信息价
  • 电网工程
查看价格

拉曼放大器(RAMAN)

  • 广东2022年1季度信息价
  • 电网工程
查看价格

话筒放大器

  • PreSonus普瑞声纳 Studio Channel
  • 1台
  • 1
  • 中高档
  • 不含税费 | 含运费
  • 2022-12-02
查看价格

放大器

  • 10信号输入放大输出 话筒输入电平 1.8mV平衡/3mV不平衡 频率响应 20Hz-20KHz 线路输入阻抗 10KΩ 工作电源 AC 220V±10% 50-60Hz话筒输入阻抗
  • 2台
  • 1
  • 曼声
  • 高档
  • 含税费 | 含运费
  • 2022-11-11
查看价格

放大器

  • 由厂家深化
  • 12套
  • 3
  • 佛山照明、雷士照明、三雄极光、西顿照明+飞利浦
  • 中高档
  • 不含税费 | 含运费
  • 2022-10-13
查看价格

放大器

  • 2放大器输入电压:AC110-240V,50/60Hz最大功率:4W DMX512输出信号指示/输入指示散热方式:传导式散热/外壳材料:铸铝 传输距离:100M传输速度:250000b/s/外壳
  • 1套
  • 3
  • 中档
  • 不含税费 | 含运费
  • 2022-07-26
查看价格

放大器

  • 由厂家深化
  • 118套
  • 3
  • 佛山照明、雷士照明、三雄极光、西顿照明+飞利浦
  • 中高档
  • 含税费 | 不含运费
  • 2022-07-13
查看价格

调谐放大器主要质量指标

衡量调谐放大器的主要质量主要包括以下几个方面:

谐振频率

放大器调谐回路谐振时所对应的频率称为放大器的谐振频率,理论上,对于 LC 组成的并联谐振电路,谐振频率 的表达式为:

式中,L 为调谐回路电感线圈的电感量;C 为调谐回路的总电容。

谐振增益(Av)

放大器的谐振电压增益放大倍数指:放大器处在在谐振频率f0下,输出电压与输入电压之比。

Av的测量方法:当谐振回路处于谐振状态时,用高频毫伏表测量输入信号Vi和输出信号Vo大小,利用下式计算:

另外,也可以利用功率增益系数进行估算:

通频带

由于谐振回路的选频作用,当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯上称电压放大倍数Av=Vo/Vi下降到谐振电压放大倍数Avo的 0.707 倍时所对应的频率偏移称为放大器的通频带带宽BW,通常用2Δf0.1 表示,有时也称2Δf0.1为 3dB 带宽。通频带带宽:

式中,Q为谐振回路的有载品质因数。

当晶体管选定后,回路总电容为定值时,谐振电压放大倍数fo与通频带BW的乘积为一常数。

频带BW 的测量方法:根据概念,可以通过测量放大器的谐振曲线来求通频带。测量方法主要采用扫频法,也可以是逐点法。

扫频法:即用扫频仪直接测试。测试时,扫频仪的输出接放大器的输入,放大器的输出接扫频仪检波头的输入,检波头的输出接扫频仪的输入。在扫频仪上观察并记录放大器的频率特性曲线,从曲线上读取并记录放大器的通频带。

逐点法:又叫逐点测量法,就是测试电路在不同频率点下对应的信号大小,利用得到的数据,做出信号大小随频率变化的曲线,根据绘出的谐振曲线,利用定义得到通频带。

具体测量方法如下:

a、用外置专用信号源做扫频源,正弦输入信号的幅度选择适当的大小,并保持不变;

b、示波器同时监测输入、输出波形,确保电路工作正常(电路无干扰、无自激、输出

波形无失真);

c、改变输入信号的频率,使用毫伏表测量不同频率时输出电压的有效值;

d、描绘出放大器的频率特性曲线,在频率特性曲线上读取并记录放大器的通频带。测试时,可以先调谐放大器的谐振回路使其谐振,记下此时的谐振频率fo及电压放大倍数Avo,然后改变高频信号发生器的频率(保持其输出电压不变),并测出对应的电压放大倍数。由于回路失谐后电压放大倍数下降,所以放大器的谐振曲线如图 1-1 所示。

增益带宽积

增益带宽积BW·G也是通信电子电路的一个重要指标,通常,增益带宽积可以认为是一个常数。放大器的总通频带宽度随着放大级数的增加而变窄,BW越大,增益越小。二者是一对矛盾。

不同电路中,放大器的通频带差异可能比较大。如:在设计电视机和收音机的中频放大器时,对带宽的考虑是不同的,普通的调幅无线电广播所占带宽是9kHz,而电视信号的带宽需要6.5MHz,显然,要获得同样的增益,中频放大器的带宽设计是完全不同的。

选择性

放大器从含有各种不同频率的信号总和中选出有用信号,排除干扰信号的能力,称为放大器的选择性。选择性的基本指标是矩形系数。其中,定义矩形系数是电压放大倍数下降到谐振时放大倍数的10%所对应的频率偏移和电压放大倍数下降为0.707时所对应的频率偏移2Δf0.1之比,即:

同样还可以定义矩形系数,即:

显然,矩形系数越接近1,曲线就越接近矩形,滤除邻近波道干扰信号的能力愈强。

查看详情

调谐放大器应用范围

调谐放大器广泛应用于各类无线电发射机的高频放大级和接收机的高频与中频放 大级。空间总是同时存在着各种各样的电磁波,我们所需要接收的只是我们感兴趣的有用信号,而其它不需要的电磁波对接收机来说就是干扰,如何更有效地选择信号并抑制干扰是接收机的重要任务之一。因此,调谐放大器在接收机中被广泛使用,这种放大器对于调谐频率附近的信号有较大的放大倍数,对于离调谐频率较远的信号放大倍数较小甚至将它衰减。在接收机中,它主要用来对小信号进行电压放大,所以大多工作于甲类放大状态。在发射机中它主要用来放大射频功率,因而大多工作于丙类或乙类状态(见功率放大器)。

调谐放大器的调谐回路可以是单调谐回路,也可以是由两个回路相耦合的双调谐回路。它可以通过互感与下一级耦合,也可以通过电容与下一级耦合。一般说,采用双调谐回路的放大器,其频率响应在通频带 内可以做得较为平坦,在频带边缘上有更陡峭的截止。超外差接收机中的中频放大器常采用双回路的调谐放大器。单级调谐放大器的增益与带宽的乘积受到放大器件参数的限制。在器件已选定时,放大器的增益越高,带宽就越窄。为保证有足够的增益和适当的带宽,往往采用几级调谐放大器级联。有时将两级(或三级)放大器的回路分别调谐到两个(或三个)不同的频率上,构成参差调谐放大器。这种放大器具有较宽的频带,总增益较高,但放大器的调整较麻烦。雷达接收机的中频放大级常采用这类放大器。

放大器件的杂散参量对调谐放大器的性能有影响。例如由于晶体管集电结电容CC的反馈作用,可能使放大器工作不稳定,甚至产生自激振荡。通常可用中和的方法加以消除。图3是带中和电路的调谐放大器,CN是中和电容器。输出信号由回路电感LCN反馈至放大器的输入端,以抵消极间电容CC的内反馈。

查看详情

调谐放大器​简介常见问题

查看详情

调谐放大器​简介文献

电子线路课件--6.1调谐放大器 电子线路课件--6.1调谐放大器

电子线路课件--6.1调谐放大器

格式:pdf

大小:1.7MB

页数: 10页

电子线路课件--6.1调谐放大器

电荷放大器-放大器 电荷放大器-放大器

电荷放大器-放大器

格式:pdf

大小:1.7MB

页数: 3页

五、电荷放大器 电荷放大器主要由一个高增益反向电压放大器和电容负反馈组成。输入端的 MOSFET 或 J-FET 提供高绝缘性能,确保极低的电流泄露。 电荷放大器将压电传感器产生的电荷转换为成比例的电压, 用来作为监测和控制过程的 输入量。电荷放大器主要由一个具有高开环增益和电容负反馈的 MOSFET( 半导体场效应晶 体管 )或 JFET(面结型场效应晶体管 )的反向电压放大器组成, 因此它的输入产生高绝缘阻抗, 会引起少量电流泄漏。忽略 Rt 和 Ri,输出端电压为: )( 1 1 1 crt r r o CCC AC C Q U 对于足够高的开环增益,系数 1/AC 接近于零。因此可以忽略电缆和传感器的电容,输 出电压仅由输入端电压和量程电容决定。 r o C QU 电荷放大器可看成是电荷积分器, 它总是在量程电容两端以大小相等, 极向相反的电荷 补偿传感器产生的电荷。 量程电容两端

高频电子电路(第2版)图书目录

绪论 1

第 1章 高频小信号调谐放大器 4

1.1 调谐放大器的组成及主要技术指标 4

1.1.1 电路组成 4

1.1.2 主要技术指标 5

1.2 调谐放大器的等效电路 7

1.2.1 晶体管y参数等效电路 7

1.2.2 LC并联谐振回路及其等效关系 8

1.2.3 放大器的等效电路 11

1.3 主要技术指标的估算 12

1.3.1 单级单调谐放大器 12

1.3.2 多级单调谐放大器 14

1.4 双调谐放大器 15

1.4.1 电路组成 15

1.4.2 主要技术指标 16

1.5 高频小信号谐振放大器的稳定性 17

1.6 集中选频放大器 17

1.6.1 集中选频滤波器 18

1.6.2 集中选频放大器应用举例 22

1.7 单调谐放大电路仿真实验 23

习题 24

第 2章 正弦波振荡器 27

2.1 反馈振荡原理 27

2.1.1 反馈振荡原理及反馈型振荡器的组成 27

2.1.2 起振条件和平衡条件 28

2.1.3 振荡器的稳定条件 29

2.2 LC振荡器 31

2.2.1 互感耦合振荡电路 31

2.2.2 LC三点式振荡电路 31

2.2.3 改进型电容三点式振荡电路 34

2.3 振荡器的频率稳定度 36

2.3.1 频率稳定度的定义 36

2.3.2 频率变化的原因及稳频措施 36

2.4 晶体振荡器 37

2.4.1 石英晶体的电特性 37

2.4.2 石英晶体振荡电路 38

2.5 RC振荡器 40

2.5.1 RC串并联网络的选频特性 40

2.5.2 文氏桥振荡器 41

2.6 正弦波振荡器仿真实验 42

习题 43

第3章 调幅、检波及混频 48

3.1 振幅调制 48

3.1.1 调幅波的性质 48

3.1.2 几种调幅波的特点及实现调幅的方法 53

3.2 调幅电路 56

3.2.1 低电平调幅电路 56

3.2.2 高电平调幅电路 59

3.2.3 其他几种调幅波电路 60

3.3 检波电路 63

3.3.1 包络检波电路 64

3.3.2 同步检波电路 67

3.4 混频 68

3.4.1 混频的基本原理 68

3.4.2 混频干扰及其克服干扰的措施 70

3.4.3 混频电路 72

3.5 调幅、检波及混频仿真实验 76

3.5.1 调幅仿真 76

3.5.2 同步检波器仿真实验 78

3.5.3 混频器仿真实验 78

习题 79

第4章 高频功率放大器 83

4.1 高频功率放大器的特点及用途 83

4.1.1 高频功率放大器的用途 83

4.1.2 晶体管工作状态对放大器效率的影响 83

4.1.3 丙类谐振功率放大器与低频功率放大器及小信号谐振放大器的区别 84

4.1.4 高频功率放大器的主要技术指标 84

4.2 谐振高频功率放大器 85

4.2.1 谐振高频功率放大器的基本电路 85

4.2.2 谐振高频功率放大器的工作原理 85

4.2.3 谐振高频功率放大器的分析方法 87

4.2.4 谐振高频功率放大器的特性 91

4.2.5 谐振高频功率放大器的直流馈电电路及匹配网络 99

4.3 丙类倍频器 103

4.3.1 倍频器的用途 103

4.3.2 丙类倍频器的基本原理 103

4.4 宽频带高频功率放大器 105

4.4.1 高频传输线变压器 105

4.4.2 功率合成 109

习题 115

第5章 角度调制与解调 116

5.1 调角波的基本性质 116

5.1.1 调角波的基本概念 116

5.1.2 调角波的数学表达式 117

5.2 角度调制电路 124

5.2.1 直接调频电路 124

5.2.2 间接调频——由调相实现调频 132

5.3 调角信号的解调 137

5.3.1 鉴相器 138

5.3.2 鉴频器 143

5.4 单失谐回路斜率鉴频器仿真 153

习题 154

第6章 反馈控制电路 156

6.1 反馈控制系统的概念 156

6.2 自动增益控制电路 157

6.2.1 放大器的增益控制 157

6.2.2 电路类型 161

6.3 自动频率控制电路 162

6.3.1 自动频率控制基本原理 162

6.3.2 自动频率微调(AFC)电路 164

6.4 锁相环路及频率合成 165

6.4.1 锁相环路的基本原理 165

6.4.2 频率合成的基本原理 166

6.4.3 锁相环的应用 169

习题 171

第7章 实训 174

7.1 高频电路制作中应该注意的问题 174

7.2 实训 176

7.2.1 调频麦克风 176

7.2.2 丙类高频功率放大器 179

7.2.3 收音机 1862100433B

查看详情

通信电子技术目录

出版说明

前言

第1单元 通信系统的模型

1.1 概述

1.1.1 通信发展简史

1.1.2 通信方式

1.2 通信系统的模型

1.3 信号与噪声

1.4 实训--信号特性测试

1.5 单元测试

第2单元 高频放大器

2.1 概述

2.2 小信号谐振放大器

2.2.1 晶体管y参数等效电路

2.2.2 单级单调谐放大器

2.2.3 多级单调谐放大器

2.2.4 集中选频放大器

2.3 丙类功率放大器

2.3.1 丙类功率放大器的工作原理

2.3.2 丙类功率放大器的静态性能分析

2.3.3 丙类功率放大器的动态性能分析

2.3.4 谐振功率放大器的直流馈电电路与匹配电路

2.4 实训

2.4.1 小信号谐振放大器

2.4.2 高频丙类功率放大器

2.5 单元测试

第3单元 正弦波振荡器

3.1 概述

3.1.1 反馈振荡器的振荡原理

3.1.2 振荡器的主要技术指标

3.2 LC正弦波振荡器

3.2.1 LC互感耦合振荡器

3.2.2 LC三端式振荡器的组成原则

3.2.3 电感反馈三端式振荡器

3.2.4 电容反馈三端式振荡器

3.2.5 改进型电容反馈三端式振荡器

3.2.6 几种三端式振荡器的比较

3.3 RC振荡器

3.4 晶体振荡器

3.4.1 石英谐振器

3.4.2 石英晶体振荡器

3.5 实训--LC振荡器和石英晶体振荡器

3.6 单元测试

第4单元 频率变换电路的原理与应用

4.1 混频电路

4.1.1 混频基本原理

4.1.2 混频电路结构

4.1.3 混频电路应用

4.1.4 倍频电路

4.2 调制的概念

4.2.1 调幅

4.2.2 调角

4.2.3 三种调制方式的比较

4.3 幅度调制与解调电路

4.3.1 调幅的方法和电路

4.3.2 解调的方法和电路

4.4 频率调制与解调电路

4.4.1 调频的方法和电路

4.4.2 解调的方法和电路

4.5 实训

4.5.1 基极调幅电路

4.5.2 大信号二极管检波电路

4.5.3 混频电路

4.6 单元测试

第5单元 锁相环与频率合成器应用

5.1 压控振荡器

5.1.1 压控振荡器原理

5.1.2 压控振荡器实际应用

5.2 锁相环

5.2.1 锁相环基本原理

5.2.2 锁相环典型应用

5.3 频率合成器

5.3.1 频率合成器的主要技术指标

5.3.2 频率合成的基本方法

5.3.3 频率合成器应用举例

5.4 实训

5.4.1 压控振荡器

5.4.2 锁相环鉴频器

5.5 单元测试

第6单元 接收机与发射机结构

6.1 接收机

6.1. 1 接收机电路结构

6.1.2 超外差式接收机的实现

6.1.3 接收机实际电路分析

6.2 发射机

6.2.1 发射机的主要技术指标

6.2.2 发射机结构

6.2.3 射频功率放大器

6.2.4 发射机的阻抗匹配网络

6.2.5 发射机实际电路分析

6.2.6 自动增益控制与自动频率控制

6.3 现代数字通信机

6.3.1 数字接收机结构

6.3.2 数字发射机结构

6.3.3 典型通信机组成

6.3.4 通信设备的小型化和通信电路的大规模集成

6.4 实训--观察通信机结构

6.5 单元测试

第7单元 通信电子技术综合实训

7.1 通信电子技术课程设计的步骤

7.2 通信电子技术课程设计的方法

7.3 通信电子技术综合实训练习

7.3.1 中频放大电路的设计与制作

7.3.2 高频压控振荡器的设计与制作

7.3.3 无线电话筒的设计与制作

参考文献

查看详情

高频电子电路(第4版)图书目录

绪论

01通信系统的组成

02发射机和接收机的组成

03本书的研究对象和任务

第1章高频小信号谐振放大器

11LC选频网络

111选频网络的基本特性

112LC选频回路

113LC阻抗变换网络

*114双耦合谐振回路及其选频特性

12高频小信号调谐放大器

121晶体管的高频小信号等效模型

122高频小信号调谐放大器

123多级单调谐放大器

*124双调谐回路谐振放大器

*125参差调谐放大器

126谐振放大器的稳定性

13集中选频放大器

131集中选频滤波器

132集成宽带放大器

133集成选频放大器的应用

14电噪声

141电阻热噪声

142晶体三极管噪声

143场效应管噪声

144噪声系数

本章小结

习题1

第2章高频功率放大器

21概述

22高频功率放大器的工作原理

221工作原理分析

222功率和效率分析

223D类和E类功率放大器简介

224丙类倍频器

23高频功率放大器的动态分析

231高频功率放大器的动态特性

232高频功率放大器的负载特性

233高频功率放大器的调制特性

234高频功率放大器的放大特性

235高频功率放大器的调谐特性

236高频功放的高频效应

24高频功率放大器的实用电路

241直流馈电电路

242滤波匹配网络

243高频谐振功率放大器设计举例

25集成高频功率放大电路简介

26宽带高频功率放大器与功率合成电路

261宽带高频功率放大器

262功率合成电路

本章小结

习题2

第3章正弦波振荡器

31概述

32反馈型自激振荡器的工作原理

321产生振荡的基本原理

322反馈振荡器的振荡条件

323反馈振荡电路的判断

33LC正弦波振荡电路

331互感耦合LC振荡电路

332三点式LC振荡电路

34振荡器的频率稳定度

341频率稳定度的定义

342振荡器的稳频原理

343振荡器的稳频措施

35晶体振荡器

351石英晶体谐振器概述

352晶体振荡器电路

36集成电路振荡器

361差分对管振荡电路

362单片集成振荡电路E1648

363运放振荡器

364集成宽带高频正弦波振荡电路

37压控振荡器

371变容二极管

372变容二极管压控振荡器

373晶体压控振荡器

374新型单片多波形集成振荡器MAX038

375新型单片集成压控振荡器MAX260x

*38RC振荡器

381RC移相振荡器

382文氏电桥振荡器

*39负阻振荡器

391负阻器件的基本特性

392负阻振荡电路

310振荡器中的几种现象

3101间歇振荡

3102频率拖曳现象

3103振荡器的频率占据现象

3104寄生振荡

本章小结

习题3

第4章频率变换电路基础

41概述

42非线性元器件的特性描述

421非线性元器件的基本特性

422非线性电路的工程分析方法

43模拟相乘器及基本单元电路

431模拟相乘器的基本概念

432模拟相乘器的基本单元电路

44单片集成模拟乘法器及其典型应用

441MC1496/MC1596及其应用

442BG314(MC1495/MC1595)及其应用

443第二代、第三代集成模拟乘法器

本章小结

习题4

第5章振幅调制、解调及混频

51概述

52振幅调制原理及特性

521标准振幅调制信号分析

522双边带调幅信号

523单边带信号

524AM残留边带调幅

53振幅调制电路

531低电平调幅电路

532高电平调幅电路

54调幅信号的解调

541调幅波解调的方法

542二极管大信号包络检波器

543同步检波

55混频器原理及电路

551混频器原理

552混频器主要性能指标

553实用混频电路

554混频器的干扰

56AM发射机与接收机

561AM发射机

562AM接收机

563TA7641BP单片AM收音机集成电路

本章小结

习题5

第6章角度调制与解调

61概述

62调角信号的分析

621瞬时频率和瞬时相位

622调角信号的分析与特点

623调角信号的频谱与带宽

63调频电路

631实现调频、调相的方法

632压控振荡器直接调频电路

633变容二极管直接调频电路

634晶体振荡器直接调频电路

635间接调频电路

64调频波的解调原理及电路

641鉴频方法及其实现模型

642振幅鉴频器

643相位鉴频器

644比例鉴频器

645移相乘积鉴频器

646脉冲计数式鉴频器

647锁相鉴频器

65调频制的抗干扰性及特殊电路

651调频制中的干扰及噪声

652调频信号解调的门限效应

653预加重电路与去加重电路

654静噪声电路

66FM发射机与接收机

661调频发射机的组成

662集成调频发射机

663调频接收机的组成

664集成调频接收机

本章小结

习题6

第7章反馈控制电路

71概述

72反馈控制电路的基本原理与分析方法

721基本工作原理

722数学模型

723基本特性分析

73自动增益控制电路

731AGC电路的工作原理

732可控增益放大器

733实用AGC电路

74自动频率控制电路

741AFC电路的组成和基本特性

742AFC电路的应用举例

75锁相环路

751锁相环路的基本工作原理

752锁相环路的基本应用

76单片集成锁相环电路简介与应用

761NE562

762NE562的应用实例

本章小结

习题7

第8章数字调制与解调

81概述

82二进制振幅键控

8212ASK调制原理

8222ASK信号的解调原理

83二进制频率键控

8312FSK调制原理

8322FSK解调原理

84二进制相移键控

8412PSK调制原理

8422PSK解调原理

85二进制差分相移键控

8512DPSK调制原理

8522DPSK解调原理

本章小结

习题8

第9章软件无线电基础

91概述

92软件无线电的关键技术

93软件无线电的体系结构

94软件无线电的应用

本章小结

习题9

附录A余弦脉冲分解系数表

部分习题答案

参考文献 2100433B

查看详情

相关推荐

立即注册
免费服务热线: 400-888-9639