选择特殊符号
选择搜索类型
请输入搜索
膜元件在实际使用过程中,其脱盐率会逐渐有所降低,即盐透过率会有所增加,同样由于受到给水水质、污染系数SDI值、设计水通量、运行维护水平、膜元件材质等多种因素的影响,因此膜元件厂家无法定量给出盐透过率增加速度,只能假设出一个数值,以供设计人员参考,考虑到每个膜元件厂家对产品性能理解不同、设计裕量不同、商业宣传的需要等多方面的因素,就不难理解为什么每个膜元件厂家会提供不同的盐透过率增加速度。
以某公司为例,其假设的膜元件每年盐透过率增加百分数如下:
醋酸纤维素膜元件,每年盐透过率增加为17%~33%,复合膜元件每年盐透过率增加3%~17%。
如果设计者选用最低脱盐率为99.6%(即盐透过率为0.4%)的CPA3膜元件,设定的每年盐透过率增加10%,那么1年后盐透过率增加值=盐透过率×每年盐透过率增加百分数,即:
1年后盐透过率增加值=0.4%×10%=0.04%; 可折算为1年后盐透过率=0.4% 0.04%=0.44%; 即1年后CPA3膜元件的最低脱盐率为99.56%。
有些设计人员或用户对此理解往往不正确,常理解为脱盐率每年衰减速度为10%,即最低脱盐率为99.6%的CPA3膜元件,1年后脱盐率为89.6%,2年后为79.6 %,3年后为69.6%,并据此认定该公司膜性能衰减太快,再加上有些膜厂家假设的膜元件每年盐透过率增加百分数为0,即无论多少年其脱盐率均不变,这也更进一步加深了用户的误解。
膜类型 |
盐透过率增加(百分数/年) |
超低压聚酰胺复合膜 |
3~17 |
低压聚酰胺复合膜 |
3~17 |
低污染聚酰胺复合膜 |
3~17 |
聚酰胺海水淡化膜 |
3~17 |
聚酰胺纳滤膜 |
3~17 |
做水池内衬防腐呀!一般脱盐水池内的溶剂以酸性或碱性物为主,具有很强的腐蚀性,而堆砌水池的基材以水泥或金属为主,这两种材料具有高强度的作用,但是耐腐蚀性能很低,这就需要一层好用的防腐材料把溶剂和基材分开...
人为降低回收率也可以提高脱盐率
主要是 防止水中溶解的盐结垢,影响传热效果。 同时水蒸发以后,会使锅筒中的含盐量增大,进而引起蒸汽含盐量增大,影响蒸汽品质。所以要定期排污。 脱盐水可以有限的缓解解决以上问题
高含盐水二次脱盐工程技术改造
高含盐水的二次回收利用一直是国内水处理行业的一个难题,随着膜技术的发展应用,反渗透系统以其诸多优势,在水处理行业得到广泛应用。该工程利用抗污染型反渗透膜对高盐水进行二次脱盐回收利用,针对运行过程中出现的问题,通过完善工艺流程、改造工艺设备,改进操作步骤等措施,强化消毒杀菌,有效控制工艺流程中微生物的滋生,降低反渗透膜元件的污染,实现该工程的高效稳定运行,推进高含盐水二次循环利用技术的推广。
流量及含盐量对污水脱盐性能的影响
研究了流量与含盐量对电吸附脱盐的影响,把不同流量的脱盐率进行了对比,分析了流量与脱盐率、单位制水能耗的关系。通过调整进水的含盐量,考察电吸附的抗冲击能力,并对出水pH值变化的规律进行了分析。
脱盐率=(总的给水含盐量-总的产水含盐量)/总的给水含盐量×100%
有时出于方便的原因,也可以用下列公式来近似估算脱盐率:
脱盐率=(总的给水导电度-总的产水导电度)/总的给水导电度×100%
脱盐率(rate of desalination)指的是在采用化学或离子交换法去除水中阴、阳离子过程中,去除的量占原量的百分数。在实际应用中一般是指反渗透系统对盐的脱除率。
概括来说,影响反渗透设备脱盐率的因素如下:
1、离子价数:脱盐率随着离子价数的增加而提高,二价、三价盐的脱盐率要高于单价盐;
2、分子大小:脱盐率随分子直径的增加而提高;
3、原水温度:原水温度升高时,由于水的粘度降低脱盐率提高;
4、原水浓度:原水浓度提高时,脱盐率下降;
5、工作压力:工作压力提高时,脱盐率有所提高但不明显;
6、pH值:酸性条件下虽然膜不容易堵塞,但脱盐率要有所下降;
7、溶解气体:可溶解性气体在游离状态下容易渗透而不脱除CO2、SO2、O2、Cl2、H2S等;
8、氢键趋势:对于含有强氢键的化合物,脱除率很低,如水、酚和氨等(也正因此才实现脱除水中杂质和溶解物而达到水与其他物质分离的目的);
9、有机物质:水中的有机物对膜有污染作用,有机物越多膜的性能越易变坏;
10、水的硬度:水的硬度越高膜越容易堵塞,对于高硬度水应先软化处理,降低硬度再进反渗透;
11、固体颗粒:固体颗粒对反渗透膜的危害极大,必须进行预处理;
12、微生物:水中的微生物、细菌对膜有危害,必须进行预处理;
13、氧化物:金属氧化物进入反渗透不能进行自行清除,应定期化学药物清除。