选择特殊符号
选择搜索类型
请输入搜索
用适量水泥分别与pH 值不同的GT 系列土样和CEC 值不同的NT 系列土样制备成SI 不同的固化土试样;在这些固化土试样中掺加不同的外掺剂,考察外掺剂对固化土抗压强度的作用。并采用天然土样BT与TT2、土样TT1 与WT 进行验证。
固化土中CH 饱和度SI=log(Q/Ksp),Ksp 为CH 的溶度积常数,Q=[Ca2 ]×[OH-]2[10],为CH 的反应商,表明了CH 浓度的变化情况,由溶度积规则可知:当Q≥Ksp 时,CH 达到饱和,SI≥0;Q<Ksp 时,CH 未饱和,SI<0。
外掺剂NH,CH,MH 作为强及中强碱,可直接增加固化土中OH-及Ca2 浓度;强碱弱酸盐NC 和KC水解后可使OH-浓度增加;这都可使Q 增加,进而增大SI。
在GT 系列土样中均掺加12%的水泥掺量、并分别掺加0~8%的CH、KC、NH、NC、MH 等外掺剂(令外掺剂掺量为CW,为土样的质量百分比。外掺剂以1%掺量依次递增,下同),令形成的固化土为GS1~GS6;在土样NT1~NT5 中均掺加15%的水泥掺量、并分别掺加0~7%的CH、 NH、MH、NC 等外掺剂,令形成的固化土为NS1~NS5;天然土样BT 与TT2、WT 与TT1 同时掺加水泥和外掺剂CH、NH、NC形成的固化土为BS 和TS1、WS 和TS2。考察GS 和NS 系列固化土的30 d 龄期抗压强度(qu);BS、TS1、WS 和TS2 的90 d 龄期qu 及部分固化土试件的SI 。
在同样水泥掺量下,pH 值为7.2 的GT3 的固化土的SI=-0.09,表明GS3 尚处于CH 不饱和状态,而pH 值为8.9 的GT4 的固化土的SI=0.06,表明GS4 中CH 已饱和;显然土样原始pH 值低于GT3的土样GT1、GT2 的固化土中也都处于CH 不饱和状态;且土样的pH 值越低,固化土SI 也越低。而土样原始pH 值高于GT4 的土样GT5、GT6 的固化土中也都处于CH 饱和状态。qu 随土样pH 值(即随固化土SI)的提高而提高,但当固化土CH 饱和之后,qu 则不再随土样pH 值(即固化土SI)的提高而增长。
对于CH 已经饱和的GS4~GS6,增加CH 并不能提高qu;而对CH 尚未饱和的GS1~GS3,随着CH 掺量的增加,qu 相应提高,但当CH掺量提高到一定程度后,进一步增加CH 掺量,qu 不再提高,且最终各固化土强度基本一致;土样pH 值越低,达到qu 不再提高的CH 掺量相应越高。qu 不再随CH掺量增加所对应CH掺量应该就是使固化土CH达到饱和的掺量。
土与水泥拌合后,水泥水化生成CH 和C-S-H,前者对固化土强度没有直接影响,而后者是固化土强度的主要贡献者,C-S-H按下式生成[2]:Ca2 (aq.) xHSiO− (aq.) OH− (aq.)↔2 2 xCaO⋅SiO ⋅H O,显然 Ca2 ,OH-离子浓度决定了C-S-H 生成量。当固化土中CH 不饱和时,土样对CH的进一步吸收将消耗本应用于生成C-S-H 的Ca2 和OH-,导致C-S-H 生成量减少。
上述试验现象表明:土样pH 值影响固化土CH 饱和度,进而影响固化土强度。固化土中CH 不饱和时,固化土中CH 饱和度决定C-S-H 的生成量,进而决定固化土强度;固化土CH 饱和后C-S-H可以足量生成,而CH 本身对固化土强度没有直接贡献,因此,进一步增加CH、进一步提高固化土CH饱和度,并不能增加固化土强度。
与掺加CH 的结果类似:对于CH已经饱和的GS4~GS6,增加KC、NH、MH、NC,并不能进一步提高qu;而对于CH 尚未饱和的GS1~GS3,随着KC、NH、MH、NC 掺量的增加,qu 相应提高,但KC、NH、MH、NC 掺量提高到一定程度后,进一步增加其掺量qu 不再提高;土样pH 值越低,达到qu 不再提高的外掺剂掺量相应越高。在CH 和不同外掺剂作用下得到的固化土最终强度基本一致。根据这些试验现象可以推断:NH、CH、NC、KC、MH 可以提高固化土SI,通过提高SI 来增加C-S-H 生成量,进而提高qu。
对于NT 系列土样,由CEC 最小的土样NT5 制成的固化土强度最高,随着土样CEC 的增加,相应的固化土强度随之降低;除NS5 中CH 已饱和外,其它各试件中均未达到CH 饱和状态,且随着土样CEC 的增加相应的固化土中SI 下降。可见:NS 系列固化土中,NT5 在掺加15%水泥后再掺加CH,qu 基本没有变化;而其它各土样在掺加15%水泥的基础上,随着CH 掺量的增加,qu 相应提高,但当CH 掺量达到某一值后,进一步加入CH,qu 则不再提高;且最终各固化土强度基本一致。随着土样CEC 的增加,使qu 不再增加的CH 掺量也相应增加。
上述试验结果说明:土样CEC 的增加降低了固化土的SI,进而降低C-S-H 生成量,导致qu 降低。如前所述:随着CH 的加入,固化土中SI 提高,水泥水化产生的C-S-H 生成量相应提高,导致qu 提高;当固化土中达到CH 饱和后,水泥水化产生的C-S-H 可以足量生成,qu 达到最大值;由于CH 对qu 没有直接贡献,此后,进一步增加CH,qu 不再增高;土样CEC越高,导致固化土SI 越低,因此,抵消CEC 作用需要的CH 也越高。
与掺加CH 的结果类似:对于CH尚未饱和的NS1~NS4,随着NH、MH、NC 掺量的增加,qu 相应提高,但掺量提高到一定程度后,进一步增加NH、MH、NC 的掺量,qu 不再提高,且最终各固化土强度基本一致;土样CEC 值越大,达到qu 不再提高的外掺剂掺量相应越高。这些试验现象说明:CH、NH、MH、NC 可以提高固化土的SI,通过提高SI 来提高C-S-H 生成量,进而提高qu。
上述对人工配制的土样的试验研究,分别讨论了因pH 或CEC 造成的固化土CH 不饱和时,外掺剂对qu 的增强作用。天然土中的实际情况较为复杂,天然土样中同时存在pH 和CEC 以及其它因素的共同影响。
在10%水泥掺量下,BS 和TS2 都没有达到CH 饱和状态,TS2 的SI 比BS 的更低,相应的TS2 的qu 也比BS 的低;与之类似,在12%水泥掺量下,WS 和TS1 也都没有达到CH 饱和状态;TS1的SI 比WS 的更低,相应的TS1 的qu 也比WS 的低。
随着CH、NH、NC等掺量的增加,qu 相应提高,但掺量提高到一定程度后,进一步增加掺量,qu 不再提高;土样SI 越低,达到qu 不再提高的外掺剂掺量相应越高。这些试验现象说明:对于天然土中的各种原因造成的固化土CH 不饱和,掺加CH、NH、NC 都可以提高固化土的SI,进而提高qu。
将水泥与软土均匀拌和使之硬化成具有足够强度的固化土是应用最广的软土加固技术之一。对于某些软土采用水泥固化的效果很差,采用同量水泥加固物理性质相近的土样固化土强度可相差很大。由于土样中pH 值和阳离子交换容量(CEC)等因素的作用,土样对水泥水化产生的氢氧化钙(CH)的吸收可能会使固化土中CH 浓度处于不饱和状态;在此情况下,土对CH 的进一步吸收将消耗本应用于产生水化硅酸钙凝胶(C-S-H)的Ca2 、OH-,从而降低了固化土中C-S-H 的生成量,导致固化土强度降低;提高固化土中CH 饱和度,可提高C-S-H 生成量,进而提高固化土强度。基于上述观点,本研究依据水泥化学和无机化学知识选择理论上可提高固化土中CH饱和度(SI)的部分外掺剂,研究其对固化土强度的影响 。
1、UEA和AEA是膨胀剂,为了增加砼的防水抗渗能力而添加的。。 2、外掺剂的量在砼构成中调整。抗渗混凝土设计要求S6时,仍执行普通混凝土价格,不作调整;抗渗混凝土设计要求S8(S10)时,可按设计要...
是的,就是按水泥用量乘以外加剂的外加剂的用量。
如楼上所述;或直接采用抗渗砼单价
采用粒径为0.1~0.074 mm 的粉砂土(FT)、北京化工二厂生产的高岭土(GT)和Na 质蒙脱土(NT)按表1 所示的比例配制成物理性质相近而CEC不同的NT 系列土样NT1~NT5,在GT 中分别掺加7.5 mol/kg 和9 mol/kg的分析纯硝酸及25,30,45 mol/kg 的分析纯氨水,搅拌均匀,成为pH值不同的GT系列土样 GT1~GT6,没有掺加化学试剂的纯高岭土(GT)称为土样GT4, 4 种天然土样取自北京(BT)、天津(TT1 和TT2)、武汉(WT),其中土样BT 与TT2、土样WT 与 TT1 的物理性质较为接近,但它们的CEC、pH 值等影响固化土SI 的因素各不相同。
固化剂为北京水泥厂产京都牌32.5普通硅酸盐水泥;外掺剂为北京益利精细化学用品有限公司产分析纯NaOH(NH)、Mg(OH)2(MH)、Ca(OH)2(CH) 、Na2CO3(NC)、K2CO3(KC)。固化土制备及养护方法如下:
①将定量土样放入搅拌锅中,用SJ-160 静浆搅拌机低速搅拌1 min 后停止;
②按试验设计放入定量固化剂和外掺剂及适量水(固化土水灰比为0.5),低速搅拌30 s 后高速搅拌1min;
③将锅壁内侧土样刮入锅内,高速搅拌1 min;
④将搅拌好的试样等分3 层放入50 mm×50 mm×50mm 试模中,每层皆需振捣密实(由每层的质量和体积控制试块密实度);
⑤试件成型1 d 后拆模,拆模试样放入标准养护箱(20℃,湿度为95%)中养护。按公路土工试验规程(JTJ051—93)测定固化土强度;按土工试验方法标准(GB/T50123—1999)测土样物理化学指标 。
当水泥掺量一定时,固化土CH 可能不饱和,在情况下,水泥水化不能产生足量的C-S-H,导致固化土强度降低。本研究结果表明:无论是因为土样的pH 还是CEC 或是pH、CEC 等多种因素造成的固化土中CH 不饱和,采用CH、NH、MH、NC、KC 作为外掺剂,可以提高固化土CH 饱和度,进而提高C-S-H 生成量、提高固化土强度 。2100433B
外掺剂对混凝土性能影响的微观分析
混凝土是由水泥、水、粗细集料以及一定量的活性掺合料和微量外加剂经过拌合、运输/输送、成型和养护制成的一种人造石料。为了掌握混凝土抗裂性能的内在机理,本报告借助扫描电镜的手段从微观层次展开分析,观察掺加粉煤灰、矿渣及高效减水剂共计10种配合比的混凝土14d、28d扫描电镜典型特征照片,分析其微观结构特性,为外加剂对水泥水化影响提供了一个微观的、全面的认识。
外掺剂对混凝土干缩性能影响分析
自研究高性能混凝土的干燥收缩与自生收缩入手,进行系统地研究混凝土早期开裂问题。主要研究混凝土浆体的早期抗裂性能,参照《水泥混凝土砂浆体抗裂性能试验方法》,把混凝土早期抗裂问题简化成水泥浆体的抗裂行为进行具体分析。
从20世纪60年代以来,高效减水剂的主要代表产品有萘磺酸盐甲醛缩合物和三聚氰胺磺酸盐甲醛缩合物,由于它们的减水率高,特别是萘系减水剂的价格适中,目前仍是国内外使用的高效减水剂,从减水剂的分子结构来看,萘系和蜜胺树脂系高效减水剂均为线型聚合物分子,并且分子中只有一种极性基团(磺酸基-SO3-);从作用机理的5个方面的作用力来看,其中两种高效减水剂主要以静电斥力为主,其他几种作用力均较小。具有以上分子结构及减水剂作用机理特点的这两种高效减水剂,其共同的缺陷是与水泥的适应性不太好,混凝土坍落度损失快。为了克服萘系及蜜胺树脂系高效减水剂的缺陷,国内外广泛开展了新型高效减水剂的研究与开发工作。新型高效减水剂应具有以下特点:碱含量低、掺量低、减水率高、增强作用大、与水泥适应性好、不离析、不泌水,能很好地控制混凝土的坍落度损失。
新型高效减水剂的作用机理应尽可能包括:①降低水泥颗粒固液界面能作用;②静电斥力作用;③空间位阻斥力作用。
水化膜润滑作用等多种作用力。分子结构应尽可能具有:①脂肪羟基和芳香羟基共同构成的非极性基团;②尽可能具有梳型支链高分子结构:③一个聚合物分子链上应同时具有多种极性基团(如羟基、醚基、羧基、磺酸基等)。
依据新型高效减水剂应有的特点,通过分子设计理论,目前国内外新型高效减水剂的合成方法有两种,一种是氨基磺酸盐系高效减水剂的合成工艺,即通过遴选价格便宜的带羟基、羧基、磺酸基的多种单体,加入甲醛,在一定的条件下经过缩聚反应形成高分子聚合物。由于氨基、羟基能与水形成氢键,故该类高效减水剂具有较强的“降低水泥颗粒固液界面能作用”、“静电斥力作用”和“水化膜润滑作用”以及一定的“空间位阻斥力作用”。其具有以上分子结构及作用机理特点的高效减水剂的减水率高,与水泥适应性好,能很好地控制混凝土的坍落度损失。另一种是聚羧酸盐系高效减水剂的合成工艺,既通过选择带有羧酸基、羟基、醚基、磺酸基等极性基的多种不饱和单体,在引发剂的作用下产生共聚反应,形成具有梳型支链结构的高分子共聚物。羧基、羟基、醚基均能与水形成氢键,故该类减水剂的分散减水作用机理主要以“空间位阻斥力阻力”和“水化膜润滑作用”为主,并具有一定的“降低水泥颗粒固界面能作用”和“静电斥力作用”,具有该分子结构及作用机理特点的聚羧酸减水剂的掺量低、减水率高、增强作用大、与水泥适应性好,能很好地控制混凝土的坍落度损失。
因此,新型高效减水剂的开发,应将氨基磺酸盐系高效减水剂的单体缩聚原理与聚羧酸盐系高效减水剂的不饱和单体共聚原理在合成工艺过程有机的结合起来,通过试验,遴选价格便宜的带羟基、羧基、磺酸基的多种单体(非极性基包括脂肪羟基和芳香羟基),通过缩聚和共聚反应合成性能优异、掺量低,而且价格适中的新型高效减水剂。
2、外加剂的复合使用
通过外加剂的复合使用,提高减水剂与水泥的适应性,从而控制混凝土的坍落度,这是普遍使用的一种简单而经济的方法。该方法主要包括:①高效减水剂与缓凝剂或缓凝减水剂的复合使用,主要通过缓凝组分的缓凝作用抑制水泥的早期水化反应,从而减小混凝土的坍落度经时损失;②减水剂与引气剂复合使用。主要通过引入大量微小气泡,增大混凝土拌和物的流动性。同时增大黏聚性,减小混凝土的离析、泌水;③减水剂与减水剂的复合使用,通过协同效应和超叠加效应。提高减水剂与水泥的适应性。
从减水剂作用机理可以看出,不同品种的减水剂。特别是聚合物分子中所含的极性基团不同的减水剂,其作用机理所包含的作用力种类及各个作用力的大小会不同。同时不同品种的水泥。其细度以及各组成矿物的性质及含量,特别是石膏的晶体结构、性质及含量又不尽相同。因此,高效减水剂与水泥之间的适应性存在着以下3种情况:①不同种类的高效减水剂,对同一种水泥的适应性可能不同;②同一种类的高效减水剂,对不同水泥的适应性可能不同;③不同厂家生产的同种高效减水剂,由于其含杂量、聚合度、平均分子量以及分子量的分布特征等可能不同,所以对同一种类水泥的适应性可能不同。
由此可见,所谓与水泥适应性好,能有效控制混凝土坍落度经时损失的高效减水剂,也仅是与之具有良好适应性的水泥品种多一些。事实上,很难发明一种与各种水泥都具有良好适应性,能够完全控制各种水泥混凝土坍落度2h经时损失的新型高效减水剂。但在研究新型高校减水剂以及新的控制混凝土坍落度经时损失方法的同时,广泛采用复合使用各种外加剂,不失为一种控制混凝土经时损失的切实可行、经济有效的方法。尤其是总掺量不变的前提下复合使用高效减水剂是提高高效减水剂与水泥适应性,有效地控制混凝土坍落度经时损失的一种重要方法。
3、减水剂的掺入方法
减水剂的掺入方法对其减水效果、适宜掺量、节约水泥量以及对混凝土拌和物的离析泌水性能、凝结时间和硬化混凝土的增强效果等均有不同程度的影响。
4、适当增硫法
在工程施工中,有时会遇到使用高浓萘系减水剂(Na2SO4含量低于5%),混凝土坍落度损失很快,而改用低浓萘系减水剂(Na2SO4含量15%),混凝土坍落度损失会大大降低。出现这种现象,可能是因为水泥浆中缺硫,即水泥水化初期,水泥浆液相中溶解的硫酸根离子浓度低,掺用低浓萘系减水剂后。可带入一定量Na2SO4,从而增加了水泥水化初期液相中硫酸根离子浓度的缘故。
水泥中SO2的作用是水泥水化初期抑制C3A迅速水化,从而调节水泥凝结时间。SO3抑制C3A的水化速度还与水泥浆的W/C有关,当W/C较小时,由于水泥浆中水量少,SO3溶出量不足,而此时如果水泥中C3A含量高,且比表面积又较大时,水泥水化速度加快,C3A与石膏会争夺水分;若水泥中SO3含量较低。浆液中溶出硫酸根离子不足,此时减水剂与水泥适应性会变差,混凝土坍落度损失加快,甚至出现急凝现象。
如果确信坍落度损失快是由于水泥浆中“缺硫”引起的,可通过适当“增硫法”,即适当增加外加剂中硫酸盐含量的方法,提高减水剂与水泥的适应性,从而控制混凝土坍落度损失。
5、适当调整混凝土配合比
混凝土拌和物初始坍落度大小对坍落度2h经时损失速度影响很大。通常初始坍落度值小,坍落度2h经时损失速度大;而随着初始坍落度值增大,2h特别是1h坍落度经时损失速度减小。因此,对于运程较远的商品泵送混凝土,如果出现坍落度损失过快,而通过调整外加剂配方及掺量的方法,又不能很好地解决问题,或者虽能解决问题,但成本太大,在这种情况下。则可能通过适当调整混凝土配合比(包括浆量多少、砂率大小等),在原裁设计值的基础上的在充分保证硬化混凝土的各种性能的前提下,适当增大混凝土的初始坍落度,也不失为一种解决工程中紧急事件的应急方法。
商品混凝土,特别是大流动性混凝土及低水胶比的高强高性能混凝土,在运输和施工过程中,由于外加剂与水泥适应性不良造成的坍落度损失过快,其不但影响混凝土的施工速度、施工质量,甚至造成无法泵送施工,而且还会影响硬化混凝土的质量,从而提出了各种改善外加剂与水泥适应性来控制混凝土坍落度损失的方法。
1、新型高性能减水剂的开发应用
从20世纪60年代以来,高效减水剂的主要代表产品有萘磺酸盐甲醛缩合物和磺酸盐甲醛缩合物,由于它们的减水率高,特别是萘系减水剂的价格适中,目前仍是国内外使用的高效减水剂,从减水剂的分子结构来看,萘系和蜜胺树脂系高效减水剂均为线型聚合物分子,并且分子中只有一种极性基团(磺酸基-SO3-);从作用机理的5个方面的作用力来看,其中两种高效减水剂主要以静电斥力为主,其他几种作用力均较小。具有以上分子结构及减水剂作用机理特点的这两种高效减水剂,其共同的缺陷是与水泥的适应性不太好,混凝土坍落度损失快。为了克服萘系及蜜胺树脂系高效减水剂的缺陷,国内外广泛开展了新型高效减水剂的研究与开发工作。新型高效减水剂应具有以下特点:碱含量低、掺量低、减水率高、增强作用大、与水泥适应性好、不离析、不泌水,能很好地控制混凝土的坍落度损失。
新型高效减水剂的作用机理应尽可能包括:①降低水泥颗粒固液界面能作用;②静电斥力作用;③空间位阻斥力作用。
水化膜润滑作用等多种作用力。分子结构应尽可能具有:①脂肪羟基和芳香羟基共同构成的非极性基团;②尽可能具有梳型支链高分子结构:③一个聚合物分子链上应同时具有多种极性基团(如羟基、醚基、羧基、磺酸基等)。
依据新型高效减水剂应有的特点,通过分子设计理论,目前国内外新型高效减水剂的合成方法有两种,一种是氨基磺酸盐系高效减水剂的合成工艺,即通过遴选价格便宜的带羟基、羧基、磺酸基的多种单体,加入甲醛,在一定的条件下经过缩聚反应形成高分子聚合物。由于氨基、羟基能与水形成氢键,故该类高效减水剂具有较强的“降低水泥颗粒固液界面能作用”、“静电斥力作用”和“水化膜润滑作用”以及一定的“空间位阻斥力作用”。其具有以上分子结构及作用机理特点的高效减水剂的减水率高,与水泥适应性好,能很好地控制混凝土的坍落度损失。另一种是聚羧酸盐系高效减水剂的合成工艺,既通过选择带有羧酸基、羟基、醚基、磺酸基等极性基的多种不饱和单体,在引发剂的作用下产生共聚反应,形成具有梳型支链结构的高分子共聚物。羧基、羟基、醚基均能与水形成氢键,故该类减水剂的分散减水作用机理主要以“空间位阻斥力阻力”和“水化膜润滑作用”为主,并具有一定的“降低水泥颗粒固界面能作用”和“静电斥力作用”,具有该分子结构及作用机理特点的聚羧酸减水剂的掺量低、减水率高、增强作用大、与水泥适应性好,能很好地控制混凝土的坍落度损失。
因此,新型高效减水剂的开发,应将氨基磺酸盐系高效减水剂的单体缩聚原理与聚羧酸盐系高效减水剂的不饱和单体共聚原理在合成工艺过程有机的结合起来,通过试验,遴选价格便宜的带羟基、羧基、磺酸基的多种单体(非极性基包括脂肪羟基和芳香羟基),通过缩聚和共聚反应合成性能优异、掺量低,而且价格适中的新型高效减水剂。
2、外加剂的复合使用
通过外加剂的复合使用,提高减水剂与水泥的适应性,从而控制混凝土的坍落度,这是普遍使用的一种简单而经济的方法。该方法主要包括:①高效减水剂与缓凝剂或缓凝减水剂的复合使用,主要通过缓凝组分的缓凝作用抑制水泥的早期水化反应,从而减小混凝土的坍落度经时损失;②减水剂与引气剂复合使用。主要通过引入大量微小气泡,增大混凝土拌和物的流动性。同时增大黏聚性,减小混凝土的离析、泌水;③减水剂与减水剂的复合使用,通过协同效应和超叠加效应。提高减水剂与水泥的适应性。
从减水剂作用机理可以看出,不同品种的减水剂。特别是聚合物分子中所含的极性基团不同的减水剂,其作用机理所包含的作用力种类及各个作用力的大小会不同。同时不同品种的水泥。其细度以及各组成矿物的性质及含量,特别是石膏的晶体结构、性质及含量又不尽相同。因此,高效减水剂与水泥之间的适应性存在着以下3种情况:①不同种类的高效减水剂,对同一种水泥的适应性可能不同;②同一种类的高效减水剂,对不同水泥的适应性可能不同;③不同厂家生产的同种高效减水剂,由于其含杂量、聚合度、平均分子量以及分子量的分布特征等可能不同,所以对同一种类水泥的适应性可能不同。
由此可见,所谓与水泥适应性好,能有效控制混凝土坍落度经时损失的高效减水剂,也仅是与之具有良好适应性的水泥品种多一些。事实上,很难发明一种与各种水泥都具有良好适应性,能够完全控制各种水泥混凝土坍落度2h经时损失的新型高效减水剂。但在研究新型高校减水剂以及新的控制混凝土坍落度经时损失方法的同时,广泛采用复合使用各种外加剂,不失为一种控制混凝土经时损失的切实可行、经济有效的方法。尤其是总掺量不变的前提下复合使用高效减水剂是提高高效减水剂与水泥适应性,有效地控制混凝土坍落度经时损失的一种重要方法。
3、减水剂的掺入方法
减水剂的掺入方法对其减水效果、适宜掺量、节约水泥量以及对混凝土拌和物的离析泌水性能、凝结时间和硬化混凝土的增强效果等均有不同程度的影响。
本书主要针对内蒙古几种典型的粉质黏土,通过室内试验,研究了水泥土在不添加外掺剂条件下的强度和变形特性, 通过对不同粉质黏土的分析,提出了十六种外掺剂,并进行单掺试验, 确定每种外掺剂对水泥土力学性质的影响及改性效果,并结合内蒙古丰富的工业材料和自然资源,研究配制了一种针对寒冷地区粉质粘土的复合水泥材料,提出了它的最佳配合比。