选择特殊符号

选择搜索类型

热门搜索

首页 > 百科 > 建设工程百科

微波铁氧体材料退磁态磁导率的测量方法

《微波铁氧体材料退磁态磁导率的测量方法》是1991年12月1日实施的一项行业标准。

微波铁氧体材料退磁态磁导率的测量方法基本信息

微波铁氧体材料退磁态磁导率的测量方法简介

备案信息

备案号:2355-1992

查看详情

微波铁氧体材料退磁态磁导率的测量方法造价信息

  • 市场价
  • 信息价
  • 询价

微波

  • 品种:微波炉;型号:BE634LGS1W;产品描述:38cm英国进口 10A 微波炉 ,内腔:不锈钢,容积: 21L; 加热模式:微波,烧烤
  • 西门子
  • 13%
  • 蚌埠合西盛贸易有限公司
  • 2022-12-07
查看价格

微波

  • 品种:微波炉;质:不锈钢;型号:BE634LGS1W;产品描述:38cm英国进口10A微波炉,内腔:不锈钢,容积:21L;加热模式:微波,
  • 西门子
  • 13%
  • 马鞍山协泰贸易有限公司
  • 2022-12-07
查看价格

微波

  • 品种:微波炉,型号:WKQD25-G1
  • 帅康
  • 13%
  • 南京渲有贸易有限公司
  • 2022-12-07
查看价格

微波

  • 品种:微波炉,质:无,型号:AMW836/IX
  • 惠而浦
  • 13%
  • 江苏慧易酉新材料有限公司
  • 2022-12-07
查看价格

微波

  • 品种:微波炉,类别:ROKI,型号:WK27-M509
  • 老板
  • 13%
  • 杭州老板电器股份有限公司安徽办事处
  • 2022-12-07
查看价格

自发电一焊机

  • 305A
  • 台班
  • 韶关市2010年8月信息价
  • 建筑工程
查看价格

二氧化碳气保护焊机

  • 电流250A
  • 台班
  • 汕头市2012年1季度信息价
  • 建筑工程
查看价格

二氧化碳气保护焊机

  • 电流250A
  • 台班
  • 汕头市2011年4季度信息价
  • 建筑工程
查看价格

二氧化碳气保护焊机

  • 电流250A
  • 台班
  • 汕头市2011年2季度信息价
  • 建筑工程
查看价格

二氧化碳气保护焊机

  • 电流250A
  • 台班
  • 广州市2011年1季度信息价
  • 建筑工程
查看价格

退磁

  • CT-400×400
  • 8台
  • 1
  • 金恒
  • 普通
  • 含税费 | 不含运费
  • 2015-06-12
查看价格

退磁

  • CT-600×600
  • 1台
  • 1
  • 金恒
  • 普通
  • 含税费 | 不含运费
  • 2015-09-22
查看价格

退磁

  • CT-300×300
  • 9台
  • 1
  • 金恒
  • 普通
  • 不含税费 | 含运费
  • 2015-09-22
查看价格

体态

  • 材料:不锈钢,工艺:锻打,焊接、抛光.规格:2.8m×1.5m×2.2m,3.5m×1.8m×2.5m
  • 1套
  • 2
  • 中档
  • 含税费 | 含运费
  • 2020-03-04
查看价格

微波

  • 微波
  • 1个
  • 3
  • 中高档
  • 含税费 | 含运费
  • 2021-10-19
查看价格

微波铁氧体材料退磁态磁导率的测量方法常见问题

查看详情

微波铁氧体材料退磁态磁导率的测量方法文献

BST掺杂对M/Z型六角铁氧体复磁导率(1MHz~1GHz)的影响 BST掺杂对M/Z型六角铁氧体复磁导率(1MHz~1GHz)的影响

BST掺杂对M/Z型六角铁氧体复磁导率(1MHz~1GHz)的影响

格式:pdf

大小:680KB

页数: 3页

摘 要:  采用陶瓷工艺制备 Co2Z ( Ba3 ( Co0.4Zn0.6)2Fe23.4O41)和BaM(BaFi1.4Co1.4Fe9.2O19)六角铁氧体,二次球磨时掺杂少量 BST(BaSrTiO3 )铁电材料,对比研究了 BST 掺杂对 Z 型和 M 型铁氧体在1MHz~ 1GHz 频率范围内相对复磁导率(μr =μr′ iμr″)的影响。BST的掺杂使Z型铁氧体μr 增大,共振频率点移向低频;使M型铁氧体的μr 减小,共振频率点移向高频。通过对其微观结构和磁参数的测试分析,讨论了 BST掺杂对 Z型和 M型铁氧体复磁导率不同影响的作用机理。

用铁砂研制M型铁氧体吸波材料 用铁砂研制M型铁氧体吸波材料

用铁砂研制M型铁氧体吸波材料

格式:pdf

大小:680KB

页数: 3页

用铁砂代替Fe2O3,采用传统陶瓷烧结工艺,研制出几种M型六角晶系复合铁氧体吸波材料。有的样品最大衰减达到40dB,10dB带宽在4GHz左右,面密度普遍较小,在8~18GHz频率范围内具有良好的微波吸收特性;实验还发现随着厚度的减小,吸收峰的位置逐渐向高频偏移。

高磁导率材料应用

低频磁场屏蔽

低频磁场是较难屏蔽的。利用高磁导率材料吸收损耗大的特点来屏蔽低频磁场是一个常用的磁场屏蔽法。使用高磁导率材料应注意以下几点:

(1)磁导率随着频率的升高而降低,材料手册上给出的数据通常是直流时的磁导率。直流时的磁导率越高,其随频率升高降低得越快。

(2)高磁导率材料在经过加工或受到冲击、碰撞后会发生磁导率降低的现象,因此必须在加工后进行适当的热处理。

(3)磁导率与外加磁场的强度有关。当外加磁场适中时,磁导率最高;当外加磁场过强时,屏蔽材料会发生饱和,磁饱和时的场强与材料的种类和厚度有关。

当要屏蔽的磁场很强时,如果使用高磁导率材料,会因磁饱和而丧失屏蔽效能;而使用低磁导率材料,由于吸收损耗不够,将不能满足要求。遇到这种情况,可采用双层屏蔽,如图2所示。

零磁通电流传感器

最有效的电流传感器是采用高磁导率材料制造的零磁通电流传感器,如坡莫合金、非晶态合金等。

一般传感器采用普通互感器原理,传感器工作在磁滞回线上很短的一个区域,这个区域可以近似为一条斜线,它们极易受材料内应力以及温度的影响,造成磁滞回线变化,测试数据极不稳定。零磁通传感器是由1个

形线圈、1个1/V变换器组成,如图3所示。

图3中原边线圈流过电流

时,在磁环内产生一个磁通
,检测线圈检测到该磁通后,便控制电流源向补偿线圈中提供一个补偿电流,其大小与
相同,而方向相反,与
相抵消。若抵消不完全,则剩余的磁通会被检测线圈检测到,进一步调节电流源的大小和方向。这是一个典型的自动负反馈系统,其最终平衡点是补偿后磁环中的磁通为零(故称为零磁通传感器),此时经1/V变换后

此传感器的关键在于整个系统工作在磁通为零的这个工作点,而不像传统传感器工作在一条磁滞回线上,所以避免了传统传感器的特性随温度漂移、非线性不好等缺点。即使电流在较大范围内变化时,传感器也可正常工作。

查看详情

铁氧体磁性材料铁氧体磁性材料的制备

铁氧体材料性能的好坏,虽然与原料、配方、成型和烧结等四个环节密切相关,也是铁氧体工艺原理重点研究的问题。但是在同一配方原料与工艺过程下制成的铁氧体材料,其性能却有很大的差别。这主要由于各个具体工艺环节中(如球磨、成型与烧结等)的具体质量有所不同。因此如何充分发挥各个工艺环节的作用及提高质量是提高铁氧体材料的一个关键问题。

通常情况下,铁氧体多晶材料采用粉末冶金法制造,具体制造工艺流程图6所示。近年来,铁氧体材料的大规模生产技术和设备在国外又有了更大的发展。日本TDK公司采用从配料到物料铁氧体化全部封闭的管道化生产方式,净化了生产环境,提高了生产效率,改善了人工的劳动条件,使铁氧体材料性能的一致性和稳定性得到了保障,达到了大规模现代化产业的要求。另外,为了获得更高性能铁氧体材料,多采用化学法制备高品质的铁氧体材料。如用酸盐混合热分解法、化学共沉淀法、喷射燃烧法和电解共沉淀法等。化学法可以克服粉末冶金法的固相反应不易完善、粉末混合不均匀以及分离不易过细和原料的活性对产品性能影响很大的缺点,从而可以显著提高铁氧体材料的性能。其缺点是成本较高,工艺相对比较复杂。

随着近代磁记录工业和微波器件的迅速发展,铁氧体多晶材料已不能满足要求了。近年来又出现了铁氧体单晶的制备工艺,并达到了规模生产的程度。如采用布里兹曼法(即温度梯度法)可生长出重达几千克的Mn-Zn铁氧体单晶,用于磁记录技术中使用的磁头的制作。另外,用于微波器件和磁一光器件中使用的石榴石型铁氧体单晶材料,也是需要相当多的。一般用于生长铁氧体单晶的主要工艺方法有温度梯度法、提拉法、水热法、浮区法、熔盐法和焰熔法等。

由于磁记录技术、磁光技术和微波集成等新技术的迅速发展,对于多晶、单晶和非晶与纳米晶态磁性薄膜材料的研究和应用日益受到重视,其制备的工艺方法也得到了快速的发展,通常被采用的磁性薄膜的制备方法主要有液相外延法、化学气相沉淀法、溅射法、激光沉淀法和蒸发法等。

用量最多的软磁性和各向同性的硬磁铁氧体材料,其制备工艺过程主要有6个工序:配料一混合一预烧一成型一烧结一热处理。

铁氧体磁性材料配料

按照一定的配方(根据过去的实践经验和理论认识决定所需要的化学成分以及所需要的化学原料),算出各种化学原料的具体用量,并将其足够准确地称量出来。绝大多数情况下,化学原料是金属氧化物或碳酸盐,少数情况下用可溶性的硝酸盐、硫酸盐或草酸盐。

铁氧体磁性材料球磨混合

铁氧体制造过程中的粉碎工序,与其他化工制造工艺的粉碎工序一样,按配方要求称量好各种化学原料之后,根据原料颗粒尺寸的大小及粉碎后尺寸大小的要求选用不同的粉碎机械。由于铁氧体的原料一般为化工原料,它们的粉粒已经非常细,可以直接进行细磨。在铁氧体制备过程中,为了提高产品质量,常常采取预烧工序。为了在预烧过程中使固相化学反应完全,在预烧之前压成毛坯,经预烧后坯料已形成了铁氧体,因此质地很硬,为此需要经过粗碎和中碎,才能进行细磨工序。由于在铁氧体制备工艺中,相对细磨工序粗、中碎机应用得比较少。因此我们在此主要讨论粉碎工序中的细磨工序,通常细磨所使用的机械有滚动球磨式和振动球磨式的球磨机。

铁氧体磁性材料预烧

将混合后的配料在高温炉中加热,促进固相反应,形成具有一定物理性能的多晶铁氧体。这种多晶铁氧体也称为烧结铁氧体。这种预烧过程是在低于材料熔融温度的状态下,通过固体粉末间的化学反应来完成的固相化学反应。在固相反应中,一般来说,铁氧体所用的各种固态原料,在常温下是相对稳定的,各种金属离子受到品格的制约,只能在原来的结点作一些极其微小的热振动。但是随着温度的升高,金属离子在结点上的热振动的振幅越来越大,从而脱离了原来的结点发生了位移,由一种原料的颗粒进入到另一种原料的颗粒中。形成了离子扩散现象。

铁氧体磁性材料成型

经过预烧已生成了铁氧体材料,通常把它做成粒料,近年来的厂家专门按着用户或后续工厂要求生产各种性能的铁氧体粒料。成型工序就是将预烧后的粒料压成产晶所要求的各种各样的形状,形成一定的坯体。成型也是保证产品质量的一个重要环节。

由于铁氧体产品的种类很多,大小各异,成型方法也很不相同。一般生产中常用的成型方法,有干压成型、热压铸成型、等静压成型等,其中以干压成型最为普遍。

铁氧体磁性材料烧结

铁氧体材料的烧结温度,一般约为1000~1400℃。由于铁氧体烧结时周围气氛对性能影响很大。如前所述,铁氧体生成时的固相化学反应,不能在还原气氛中进行。因此通常铁氧体材料的烧结在硅碳棒加热的电炉(窑)内进行。对于某些有特殊要求的铁氧体材料,必须在特殊的炉子中烧结,如高磁导率的锰锌铁氧体,必须在真空炉中烧结,钇铁石榴石多晶铁氧体必须在1400℃以上的炉子中烧结。烧结过程中均要发生化学变化和物理变化。 2100433B

查看详情

微波铁氧体器件正文

这种器件在微波电路中对微波信号或能量起隔离、环行、方向变换、相位控制、幅度调制或频率调谐等作用,广泛用于雷达、通信、无线电导航、电子对抗、遥控、遥测等微波系统以及微波测量仪器中。隔离器和环行器是1951年由C.L.霍根发明的。随后许多新型线性器件,如相移器、开关、调制器等相继出现。1957年H.苏耳发明了微波铁氧体参量放大器,发展了非线性器件,虽然未能达到实用,但对其他参量器件的发展起了促进作用。60年代初,磁调滤波器、磁调振荡器等研制成功,在电子对抗技术和微波测量仪器中得到应用。以后各种微波铁氧体器件继续发展,成为一类重要的微波器件。

基本原理 微波铁氧体器件是利用铁氧体的旋磁效应制成的。铁氧体的旋磁效应来自电子自旋运动。一个带有负电荷的电子作自旋运动必然同时具有角动量及磁矩。如这个电子的角动量为P,磁矩为M,则磁矩与角动量的比值称为旋磁比,用γ代表

M/P=-γ (1)

在图1中,电子自旋磁矩M受到直流恒定磁场H0的作用时,磁矩的进动方程式为

dM/dt=-γM×H0 (2)

M围绕H0按右旋方向进动, 这种进动也称拉莫尔进动。进动角频率为

ω0=γH0 (3)

由于进动有能量损耗,M与H0的夹角θ会逐渐变小,最后M完全重合在H0的方向上。如果在垂直于H0的方向上加一高频交变磁场h,则能弥补进动的能量损耗,使M的进动可以维持下去。当交变磁场的频率ω与M进动频率ω0相等时,进动的幅度达到最大。这就是铁磁共振现象。这时高频交变磁场的频率称为铁磁共振频率。 旋磁介质材料在产生铁磁共振时,它的磁导率是一个张量,可写为

(4)

式中μ、k是M、γ、H0以及ω的函数。而交变磁感应强度b和交变磁场强度h的关系为

b=0μh

式中称为旋磁张量磁导率,也称坡耳德尔张量。它的物理意义是在没有磁化的情况下,旋磁介质可以近似地认为是均匀的各向同性的,在外加直流恒定磁场H0的作用下,它就变为各向异性的。这时沿着x轴方向的磁场强度h所产生的磁感应强度b的方向并不单纯沿着x轴方向,它除具有x方向的分量μnx外,同时还具有y方向的分量jkhx。μ项可以认为是h直接对b的贡献,而k项可以认为是一个耦合项,它把高频能量由一种极化转换为另一种极化。

由于旋磁介质具有各向异性的特性,电磁波在这种介质中传播就会产生一系列新的效应,如极化面旋转效应(法拉第旋转效应)、非互易场移效应、共振吸收以及张量磁导率的改变等,利用这些效应可制成多种类型的微波铁氧体器件。

材料 各种微波铁氧体器件的功能不同、工作频率不同,因而对微波铁氧体材料的性能要求也不同。一般要求材料有好的旋磁性和低的损耗。表征材料性能的主要参数有:饱和磁化强度及其温度系数、居里点、铁磁共振线宽、有效共振线宽、自旋波线宽、介电常数、介电损耗角正切等。微波铁氧体材料有许多品种,根据材料的成分和晶体结构分类,有石榴石型、尖晶石型和磁铝石型(六角晶系)等。根据材料的制造工艺和形态又分多晶材料、单晶材料和薄管膜材料。多晶铁氧体材料一般采用陶瓷工艺制造;微波铁氧体单晶用助熔剂法或提拉法生长;单晶薄膜材料用液相外延或气相外延工艺生长。

分类 微波铁氧体器件种类很多:按功能分,有隔离器、环行器、开关、相移器、调制器、磁调滤波器、磁调振荡器、磁表面波延迟线等;按结构形式分,有波导式、同轴式、带线式及微带式;按工作方式分,有法拉第旋转式、共振式、场移式、结式等;按所用材料分,有多晶铁氧体器件,单晶铁氧体器件,薄膜铁氧体器件。

隔离器 一种非互易的两端口微波铁氧体器件。它只容许电磁波单向通过,反方向传输的电磁波会产生很大的衰减,常用于振荡器与负载的隔离,消除电磁波反射造成的频率漂移等影响。对器件性能的主要要求是:正向衰减小(一般不超过0.5~1分贝),反向隔离大(一般大于20~30分贝),电压驻波比小(一般不大于1.10~1.25),有一定的频带宽度,此外还应规定承受功率和工作温度等。

①法拉第旋转式隔离器:利用电磁波在纵向磁化的铁氧体棒中传播时极化面产生旋转(即法拉第旋转效应)制成的隔离器。这种隔离器结构比较复杂,承受功率低,工作频带窄,多用于毫米波段。

②共振式隔离器:利用铁氧体的铁磁共振特性(即对右圆极化波的高频磁场有共振吸收现象,而对左圆极化波不存在共振吸收)制成的隔离器。它又分为波导式、同轴式或带线式。这种隔离器体积小,可承受较大的功率,但频率很高时制作困难。

③场移式隔离器:当矩形波导中部分充填横向磁化的铁氧体时,则波导中电磁场的分布即与磁化方向和传播方向有关。这就是场移效应。利用这种效应可以制成场移隔离器,主要用在厘米波段。但所能承受的功率低,多用于低驻波、高隔离的精密微波测试系统中。

④边导模隔离器:当以横向磁化的铁氧体为介质的带线或微带中心导体宽度远大于铁氧体的厚度时,电磁波传播的主模式是边导模。这种模式的主要特点是当电磁波沿某一方向传播时,能量集中于带线的一边,当沿相反方向传播时,则能量集中于另一边。而且这种能量的集中与频率无关。利用这种模式可以制成边导模隔离器。这种隔离器结构简单,频带极宽,可以达到多倍频程。

⑤集总元件隔离器:一种各端口内部都与集总元件网络相连的隔离器。主要用于微波低频段和甚高频段,可以显著缩小隔离器的尺寸。

环行器 一种非互易的多端口微波铁氧体器件。在这种器件中输入任一端口的功率,都会按照一定顺序传输到下一个端口。图2为四端环行器,以1→2,2→3,3→4,4→1顺序传输;如果外加磁场反向,环行顺序也相反。环行器在微波电路中可用作双工器(在一个天线上同时进行接收和发射的双重操作)和单端放大器(如二极管参量放大器)的输入和输出间的隔离。环行器的主要性能要求与隔离器相似。 ①法拉第旋转式环行器:利用极化面旋转效应(法拉第效应)制成的环行器。它是早期应用的一种波导铁氧体微波器件,后来逐渐被结环行器所取代,但在毫米波段仍有应用。

②相移式环行器:由双T、方向耦合器和铁氧体相移器等组成(图3)。两个双T之间联结波导的电长度是相等的,而相移器仅对从左面输入的信号产生180°的相移。这样,由1臂输入的信号到达双 T时是同相,从2臂输出;从2臂输入的信号到达双 T时是反相,从 3臂输出。依此类推,即能实现1→2,2→3,3→4,4→1的环行。这种环行器可承受较高的功率。 ③结环行器:在一个三端 120°轴对称的波导或带线结的中心放置铁氧体片,并垂直加上恒定磁场即构成一个 Y型结环行器。它具有结构简单、性能良好等优点。它可做成T型,为了满足微波集成电路的需要,可做成微带结环行器。

④集总参数环行器:在较低的微波频段,可以在Y型环行器的带线中心导体结处构成集总参数的电感,同时在各臂加上适当数值的电容来分别调谐各个臂。这样,就可用结构紧凑、体积小的集总参数元件来代替分布参数的带线,使环行器的体积大大减小。

铁氧体开关 利用铁氧体的旋磁效应制成的微波电路开关。常用环行器构成,通过改变外磁场方向来完成开关作用。波导式和同轴式铁氧体开关比较成熟,按磁路结构它们又可分为内回路式和外回路式。前者开关能量低,速度快;后者频带较宽。铁氧体开关一般采用锁式(或称数字式),开关时间可达微秒级,能承受较大的功率,插入损耗较小,多用于雷达、通信和其他微波系统中。

铁氧体相移器 利用铁氧体材料的磁化强度或张量磁导率随外加磁场的变化来改变传输电磁波相位的微波器件。微波铁氧体相移器的种类很多:按结构可分为波导式、同轴式、带线式或微带式相移器;按互易性可分为互易和非互易相移器;按工作方式(激励方式)可分为连续(模拟)和步进(数字)相移器;按功率容量可分为高功率和低功率相移器等。铁氧体相移器最主要的参数是品质因数(或称优值),以度/分贝表示,即1分贝衰耗时能达到的相移量。各种铁氧体相移器可用于相控阵雷达天线各单元的相位控制,在通信系统中也有广泛的应用。

铁氧体调制器 利用交变外磁场控制铁氧体材料旋磁效应,对电磁波进行调制的微波器件,如调相器、调幅器等。

铁氧体调相器用于对微波信号进行相位调制。它是在矩形波导中沿轴线方向放置一根铁氧体棒,波导外面绕上线圈而构成。当微波信号通过波导时,其相位即受由载流线圈产生的径向磁场而磁化的铁氧体棒的影响而发生变化。载流线圈的安匝数越大,相位改变也越大;反之越小。当线圈中通以交变电流时,则传输的微波受到调制而成为交变调相波。

铁氧体调幅器用于对微波信号进行幅度调制,其结构与调相器类似,不同的是在铁氧体中间夹有平行于波导宽边的喷涂镍铬合金电阻薄膜的云母片。当微波信号通过波导时,因受到磁化的铁氧体中电阻薄膜的影响而产生衰耗,衰耗量与载流线圈的安匝数成比例。因此,输出的微波信号的幅度也就随着衰耗大小而变化,成为微波调幅波。

磁调滤波器 钇铁石榴石等单晶具有很低的微波损耗,用钇铁石榴石单晶小球或圆盘作谐振器具有很高的Q值。谐振频率靠调谐外磁场而改变。利用这种现象制成的滤波器称为磁调滤波器或钇铁石榴石调谐滤波器。磁场的调谐往往用改变电流的方法来实现,因此又称电调滤波器。这种器件的特点是:调谐速度快且无机械运动,调谐线性好,调谐频率范围宽,主要用于电子对抗和微波仪器中。

磁调振荡器 利用钇铁石榴石单晶小球谐振器作为谐振回路元件的固体振荡器,通常又称钇铁石榴石调谐振荡器。它的主要特点是体积小,可在宽频带内磁调谐。主要用于电子对抗和微波仪器中。

微波铁氧体器件的应用日渐增多。大部分器件还需要提高性能、降低价格和进一步小型化、集成化、发展的重点将是电子对抗用的宽频带快速调谐器件、相控阵雷达用的相移器和通信卫星系统用的低损耗器件等。研究的重点是在具有信号处理功能的静磁波器件和高频段的毫米波器件方面。

参考书目

向仁生著:《微波铁氧体线性器件原理》,科学出版社,北京,1979。

B.Lax and K.J.Button,Microwave Ferrites and Ferrimagnetics,McGraw-Hill,New York,1962.

查看详情

相关推荐

立即注册
免费服务热线: 400-888-9639