选择特殊符号
选择搜索类型
请输入搜索
钴铬钨合金广泛应用于机车柴油机、核电站阀门、船舶柴油机及各种航空器上。
早期的钴铬钨合金用非真空冶炼和铸造工艺生产。后来研制成的合金,如Mar-M509合金,因含有较多的活性元素锆、硼等,用真空冶炼和真空铸造生产。
一般钴铬钨合金缺少共格的强化相,虽然中温强度低(只有镍基合金的50-75%),但在高于980℃时具有较高的强度、良好的抗热疲劳、抗热腐蚀和耐磨蚀性能,且有较好的焊接性。适于制作航空喷气发动机、工业燃气轮机、舰船燃气轮机的导向叶片和喷嘴导叶以及柴油机喷嘴等。
碳化物强化相 钴铬钨合金中最主要的碳化物是 MC﹑M23C6和M6C,在铸造钴铬钨合金中,M23C6是缓慢冷却时在晶界和枝晶间析出的。在有些合金中,细小的M23C6能与基体γ形成共晶体。MC碳化物颗粒过大,不能对位错直接产生显着的影响,因而对合金的强化效果不明显,而细小弥散的碳化物则有良好的强化作用。位于晶界上的碳化物(主要是M23C6)能阻止晶界滑移,从而改善持久强度,钴铬钨高温合金HA-31(X-40)的显微组织为弥散的强化相为 (CoCrW)6 C型碳化物。
在某些钴铬钨合金中会出现的拓扑密排相如西格玛相和Laves等是有害的,会使合金变脆。钴铬钨合金较少使用金属间化合物进行强化,因为Co3 (Ti﹐Al)﹑Co3Ta等在高温下不够稳定,但使用金属间化合物进行强化的非钴铬钨合金也有所发展。
钴铬钨合金中碳化物的热稳定性较好。温度上升时,碳化物集聚长大速度比镍基合金中的γ 相长大速度要慢,重新回溶于基体的温度也较高(最高可达1100℃),因此在温度上升时,钴铬钨合金的强度下降一般比较缓慢。
钴铬钨合金有很好的抗热腐蚀性能,一般认为,钴铬钨合金在这方面优于镍基合金的原因,是钴的硫化物熔点(如Co-Co4S3共晶,877℃)比镍的硫化物熔点(如Ni-Ni3S2共晶645℃)高,并且硫在钴中的扩散率比在镍中低得多。而且由于大多数钴铬钨合金含铬量比镍基合金高,所以在合金表面能形成抵抗碱金属硫酸盐(如Na2SO4腐蚀的Cr2O3保护层。但钴铬钨合金抗氧化能力通常比镍基合金低得多。
钨铬钴合金 (Stellite):更确切的名字是钨铬钴6K合金。一种钴合金,非常好的抗磨损能力,非磁性物质,也很昂贵,是比较有争议性的材料。
钨钢合金一般指的是含钨成分的高速工具钢,用于机械加工,热处理硬度为大于等于HRC63--70。钨钴合金即通常讲的硬质合金,按化学成分分有钨钴类(YG)、钨钴钛类(YT)、钨钛钽(或铌)类(YW)和碳化...
什么价格一颗?
钴铬合金钢冠二百四十元一颗,钴铬烤瓷牙套四百六十元一颗,没有负作用,不影响生育,有质量保证卡。 价格不能反应质量,都是在加工厂做的牙,只要有质保卡就行,只是技术有高低,但也不是...
钴铬钨合金的基本成分是:Co:50%~58%,Cr:28%~30%,W:4%~6%,Ni:2%~4%等各种合金组成,熔点为1470℃。
由合金成分可以看出,该合金的含钴量和含钨量都十分高,使得该材料具有优良的高温性能,同时具有较差的导热性。正是这些特性,使钴铬钨合金在磨削加工时火花呈暗红色,火花数量极少,脱离工件表面的金属极易堵塞砂轮,使磨削条件迅速变差,同时产生大量磨削热不能迅速扩散,造成效率低下,工件表面烧伤。
钴铬钨合金中的碳化物颗粒的大小和分布以及晶粒尺寸对铸造工艺很敏感,为使铸造钴铬钨合金部件达到所要求的持久强度和热疲劳性能,必须控制铸造工艺参数。钴铬钨合金需进行热处理,主要是控制碳化物的析出。对铸造钴铬钨合金而言,首先进行高温固溶处理,温度通常为1150℃左右,使所有的一次碳化物,包括部分MC型碳化物溶入固溶体;然后再在870-980℃进行时效处理,使碳化物(最常见的为M23C6)重新析出。
铬钨堆焊合金含铬25-33%,含钨3-21%,含碳0.7-3.0%。,随着含碳量的增加,其金相组织从亚共晶的奥氏体 M7C3型共晶变成过共晶的M7C3型初生碳化物 M7C3型共晶。含碳越多,初生M7C3越多,宏观硬度加大,抗磨料磨损性能提高,但耐冲击能力,焊接性,机加工性能都会下降。被铬和钨合金化的钴铬钨合金具有很好的抗氧化性,抗腐蚀性和耐热性。在650℃仍能保持较高的硬度和强度,这是该类合金区别于镍基和铁基合金的重要特点。钴铬钨合金机加工后表面粗糙度低,具有高的抗擦伤能力和低的摩擦系数,也适用于粘着磨损,尤其在滑动和接触的阀门密封面上。但在高应力磨料磨损时,含碳低的钴铬钨合金耐磨性还不如低碳钢,因此,价格昂贵的钴铬钨合金的选用,必须有专业人士的指导,才能发挥材料的最大潜力。
合金工件的磨损在很大程度上受其表面的接触应力或冲击应力的影响。在应力作用下表面磨损随位错流动和接触表面的互相作用特征而定。对于钴铬钨合金来说,这种特征与基体具有较低的层错能及基体组织在应力作用或温度影响下由面心立方转变为六方密排晶体结构有关,具有六方密排晶体结构的金属材料,耐磨性是较优的。此外,合金的第二相如碳化物的含量、形态和分布对耐磨性也有影响。由于铬、钨和钼的合金碳化物分布于富钴的基体中以及部分铬、钨和钼原子固溶于基体,使合金得到强化,从而改善耐磨性。在铸造钴铬钨合金中,碳化物颗粒尺寸与冷却速度有关,冷却快则碳化物颗粒比较细。砂型铸造时合金的硬度较低,碳化物颗粒也较粗大,这种状态下,合金的磨料磨损耐磨性明显优于石墨型铸造(碳化物颗粒较细),而粘着磨损耐磨性两者没有明显差异,说明粗大的碳化物有利于改善抗磨料磨损能力。
代铬镀层镍钴铁合金的实验方法
代铬镀层镍钴铁合金的实验方法 实验器材及装备: 代铬镀层镍钴铁电镀原理图 1—电镀槽 2—阳极 3—直流电源 4—代铬镀层镍钴铁层 5—阴极 6—搅拌器 7—电镀液 8—过滤器 9—泵 10—加热器
钴铬合金烤瓷冠修复致敏1例
患者,女,54岁,2014-08-10在我科行上前牙钴铬合金烤瓷联冠修复。2015-07-14复诊,诉镶装烤瓷牙后自觉口干,有烧灼感,全身疲乏,头晕,心慌,精神差,体质量减轻,后经医生提醒,上述不适是镶装烤瓷牙后出现的,故来我科要求拆除烤瓷牙。否认系统性疾病及药物过敏史。查体:T:36℃,P:84/min,R:24/min,BP:126/78mmHg,心肺听诊未闻及异常,肝脾未触及,意识清楚,倦怠面容。口腔检查:上颌中切牙及侧切牙烤瓷联冠修复,形态完好,修复体颈缘处牙龈轻度红肿,探诊出血,牙结石Ⅰ°,口腔卫生差。遂先行牙周基础治疗,嘱认真刷牙,保持口腔卫生。半月后复诊,
字母“YG”表示“WC-Co”,“G”后面的数字表示Co的含量,“X”表示细晶粒,“C”表示粗晶粒。这类金属陶瓷通常抗弯强度和断裂韧性随钴含量的增加而提高,而硬度下降。钨钴合金具有较高的、弹性模量和较小的热膨胀系数,是硬质合金中使用最广泛的一类。
钨钴合金硬度检测主要采用洛氏硬度计,测试HRA硬度值。PHR系列便携式洛氏硬度计十分适于测试钨钴合金的硬度。仪器重量精度与台式洛氏硬度计相同,使用和携带都十分方便。
钨钴合金是一种金属,通过硬度试验可以反映钨钴合金材料在不同的化学成分、组织结构及热处理工艺条件下机械性能的差异,因此硬度试验广泛应用于钨钴合金性能的检验、监督热处理工艺的正确性及新材料的研究。
钨钴合金用作刀具可加工铸铁、有色金属、非金属、耐热合金、钛合金和不锈钢等,还可作引伸模具、耐磨零件、冲压模具和钻头等。
钨和钴为主要成份的一种合金,多用于矿山开采的钎头制作。
钨钴合金作为常用牌号的硬质合金之一,其物理性质主要有:
钨钴合金的矫顽磁力由于硬质合金中的粘结相是铁磁性物质,因而使合金具有一定的磁性,矫顽磁力可用来控制合金的组织,是钨钢生产厂家的一项内控指际。WC-Co合金的矫顽力主要与钻含量及其分散度有关,随钴含量的降低而提高。当钴量一定时,由于钴相的分散程度随碳化钨晶粒变细而提高,使矫顽力也随之增大。反之,则矫顽力降低。因此,在其他条件相同的情况下,矫顽力可作为间接衡量合金中碳化钨晶粒大小的参数:在正常组织的合金中,随着含碳量的降低,钻相中钨含量增大,使钴相受到较大的强化,矫顽力会因此而增大。因此,烧结时的冷却速度越大,矫顽力也愈大。
合金试样在碰场中,随着外加磁场的增加,合金的磁感应强度也增加,当磁场强度达到一定值时,磁感应强度不再增加,即合金已经达到磁饱和了。合金磁饱和值只与合金含钴量有关,而与合金中碳化钨相的晶粒度无关。因此,磁饱可用于对合金进行非破坏性的成分检查,或鉴定已知成分的合金是否存在非磁性的ηl相。
由于碳化钨具有较高的弹性模量值,因此,WC-Co合金也具有高的弹性磨量。随着合金中钴含量的增加,弹性模量降低;合金中碳化钨晶粒度对弹性模量无明显影响。随着使用温度的升高,合金弹性模量会降低。
为了避免工具在使用过程因过热而损坏,通常希望合金有较高的导热率。WC-Co合金有较高的导热率,约为0.14-0.21卡/厘米·度·秒, 导热率一般只与合金钴含量有关,随钴含量的降低而提高。
WC-Co合金的线膨胀系数随含钴量的增加而增大。但合金的膨胀系数值比钢材的线膨张系数低得多,这使合金工具镶焊时,会产生较大的焊接压力,如果不采取缓冷措施,往往会造成合金裂纹。对于强度低的合金,则更为突出。
硬度是硬质合金的一项主要的机械性能指标。随着合金中钴含量的增加或碳化物晶粒度的增大,合金的硬度下降。如当工业WC—Co合主的钴含量从2%增加到25%时,合金的硬度HRA从93降低到86左右,大约每增加3%的钴,合金硬度下降1度,细化碳化钨晶粒度能有效地提高合金的硬度。
同硬度一样,抗弯强度是硬质合金的一项主要性质。影响合金抗弯强度的因素多而复杂,凡影响合金成分,组织及试样状态的各种因素,均可导致抗弯强度值的改变。一般来说,合金抗弯强度随钴量的增多而提高。但钴量超过25%以后,抗弯强度反而随钴量的增多而下降。就工业生产的WC-Co合金而言,在0~25%钴含量范围内,合金抗弯强度总是随钻含量的增加而升高。
硬质合金的抗压强度是表示抵抗压缩负荷的能力。WC-Co合金抗压强度随合金含钴量的增加而下降,随合金中碳化钨相晶粒变细而提高。因此,钴含量较低的细晶粒合金有较高的抗压强度。
冲击韧性是矿用合金的一项重要技术指标,对于苛刻条件下的断续切削刃具也具有实际意义。WC-Co合金冲击韧性随钴含量的增加而增大,随碳化钨晶粒度的提高而增大。因此,矿用合金大多是较高钴合量的粗晶粒合金,如YGllC,YG8C等。
当然,硬质合金的相关物理性质也不局限于分析研究这些,针对特定用途而选择配方不同的材料所表现出来的特性也会有所不同。
碳化钨基硬质合金是以以碳化钨 (WC)为主要成分的硬质合金。在硬质合金中产量最大,用途最广。分为以下几类:(1)WC-Co系合金,简称“钨钴合金”,含有3~25%钴作为粘结剂,代号YG。 可用作刀具、模具、钴头、喷嘴、穿孔工具等。 (2 )WC-TiC-Co系合金,简称“钨钴钛合金”, 含有4~10%钴作为粘结剂,含有5~30%TiC, 余为WC。代号YT。主要用作切削钢材的刀具。 (3)WC-TiC-TaC(NbC)-Co系合金,简称“通用合金”,代号YW,主要用作切削刀具。(4)碳化钨 基耐蚀合金,包括WC-Ni、WC-Ni-Cr和WC-CoCr三种类型,主要用作耐蚀耐磨零件,如密封环、 汽缸衬里、圆珠笔尖等。 2100433B