选择特殊符号
选择搜索类型
请输入搜索
流化床污泥干化工艺流程(如图1:流化床污泥干化系统流程图)所示。
脱水污泥送至污泥计量储存仓,然后用污泥泵将污泥送至流化床污泥干燥机的进料口,湿污泥在流化床与干污泥及惰性载体充分混合。干燥机由三部分组成:最下是风箱,将循环气体分送到装置的不同区域;中间段是将蒸发水的热量与热油送入流化床内;最上部位抽吸罩,使流化的干颗粒脱离循环气体。流化床内干燥温度为85℃,产生的污泥颗粒滞留时间长、产品数量大,即使供料的质量或水分有些波动也能确保干燥均匀。污泥颗粒通过旋转气锁阀送至冷却器,冷却到40℃以下通过输送机送至产品料仓。流化床干化设备推荐采用间接加热,热媒采用通过燃烧沼气、天然气或煤等加热的热油,也可以采用蒸汽或其他废热。系统氧含量<3%,热媒温度180~220℃。可直接将污泥加入流化床,而不需要干污泥返混。热量约720kcal/kg蒸发水,同时需电耗约100~200kWh/t蒸发水。流化床干化工艺设备单机蒸发水量1000~20000kg/h,单机污泥处理能力30~600t/d(含水率以80%计),适用于各种规模的污泥处理厂,尤其适用于大型和特大型污泥处理厂。流化床干化工艺设备既适用于污泥全干化,也适用于污泥半干化处理。最终产品的污泥颗粒分布较均匀,直径1~5mm。
污泥热干化设备按热介质与污泥接触方式可分为直接加热式、间接加热式和直接/间接联合干燥式三种。按设备进料方式和产品形态大致分为两类:一类是采用干料返混系统,湿污泥在进料前先与一定比例的干泥混合,产品为球状颗粒;另一类是湿污泥直接进料,产品多为粉末状。按工艺类型可分为流化床干化、带式干化、浆叶式干化、卧式转盘式干化和立式圆盘式干化等五种。
经机械脱水后的污泥含水率仍在78%以上,污泥热干化可以通过污泥与热媒之间的传热作用,进一步去除脱水污泥中的水分使污泥减容。干化后污泥的臭味、病原体、黏度、不稳定等得到显著改善,可用作肥料、土壤改良剂、制建材、填埋、替代能源或是转变为油、气后再进一步提炼化工产品等。热干化工艺应与余热利用相结合,不宜单独设置热干化工艺。可充分利用污泥厌氧消化处理过程中产生的沼气热能、垃圾和污泥焚烧余热、热电厂余热或其他余热干化污泥。根据干化污泥含水率的不同,污泥干化类型分为全干化和半干化。“全干化”指较低含水率的类型,如含水率10%以下;而“半干化”则主要指含水率在40%左右的类型。采用何种干化类型取决于干化产品的后续出路。
将污泥进行干化,更有利于污泥的利用与最终处置。干化后污泥的利用与处置分为五个方面:1、农业上应用(有机肥料,通过堆肥实现)2、建筑材料(造砖和纤维板)3、污泥气利用(可作为燃料)4、填埋5、投海 污泥...
污泥干化sludge drying 通过渗滤或蒸发等作用,从污泥中去除大部分含水量的过程,一般指采用污泥干化场(床)等自蒸发设施。
都是热泵烘干的。
(1)污泥干化设备选型,应根据干化的实际需要确定。规模较小、污泥含水率较低、连续运行时间较长的干燥设备宜采用间接加热系统,否则宜采用带有污泥混合器和气体循环装置的直接加热系统。
(2)由于脱水污泥的含水率可能会有变动,污泥干化设备处理规模设计时应考虑所需蒸发的水量,而不能简单依据脱水污泥量。污泥热干化处理的污泥固体负荷和蒸发量应根据污泥性质、设备性能等因素,参照相似设备运行经验确定。污泥热干化设备宜设置2套。若设1套,应考虑采取设备故障检修和常规检修期间的应急措施,包括污泥储存设施或其他备用的污泥处理处置途径。
(3)污泥干化设备的能源:间接加热方式可以使用所有的能源,包括污泥气、烟气、燃煤、蒸汽、燃油、沼气、天然气等,其利用的差别仅在温度、压力和效率;直接加热方式则因能源种类不同,受到一定限制,其中燃煤炉和焚烧炉因烟气大,并存在腐蚀而较少使用。
(4)与干化设备爆炸有关的三个主要因素是氧气、粉尘和颗粒的温度。不同的工艺会有些差异,但必须控制的安全要素是:氧气含量<12%;粉尘浓度<60g/m3;颗粒温度<110℃。
(5)湿污泥仓中甲烷浓度应该控制在1%以下;干泥仓中干泥颗粒温度应控制在40℃以下。
(6)为避免湿污泥敞开式输送对环境造成影响,应采用污泥泵和管道将湿污泥密封输送入干化机。干化机出料口须设置事故储仓或紧急排放口,供污泥干化机停运或非正常运行时暂存或外排。
(7)砂石混入污泥对干化设备的安全性存在负面影响。对于含砂量较大的污泥,可通过增加耐磨量、降低转动部件转速等方法以减少换热面的磨损,特别是采用导热油作为热媒介质时,必须十分注意。
(8)污泥热干化产品应妥善保存、利用或妥善处置,避免二次污染。污泥热干化的尾气烟气,应处理达标后排放。污泥干燥场附近,应设置长期监测地下水质量和空气质量的设施。
污泥干化焚烧输送系统的优化改造研究
剩余污泥与其它可燃性物质有质的差异,给污泥干化系统的操作带来了较多难以控制的问题。干化污泥的输送决定着焚烧炉的进料,影响着炉膛内温度的控制以及污泥干化焚烧的运行效率。针对流化床污泥干化焚烧系统干化污泥的输送分析了在实际操作中存在的问题,也是污泥干化普遍存在的问题,提出了优化改造方案并实施设备改造。通过对输送系统的优化和改造,提高了运行效率,降低了设备故障率、检修强度和费用,方便了维护和检修。
湍流污泥干化技术有望实现污泥无害化与资源化
近日,湍流污泥干化技术引发业内关注。据了解,随着我国城镇化水平不断提高,污水处理量和所产生的污泥量也在不断增加。
传统污泥干化池存在的问题主要表现在:
1、干化池滤料过厚时易造成阻塞,漂浮物(油)浮在最上层,水在中间,污泥在最下层,由于漂浮物(油)隔断了水与空气的接触面而无法自然蒸发和过滤,当滤料层过薄时,又起不到过滤的目的,从而使污泥干化效果不理想。
2、当干化医疗污水产生的有机污泥时,需要3个月左右的时间,而且每次清理污泥时都会带走大量的滤料,并受气候变化的影响较大。而对含浮油污水产生的无机污泥,则需要半年左右的时间,还会造成油污带来的火险隐患。
3、传统污泥干化池清理污泥费时、费力,而且,对含浮油的污泥因没有将油污分离开,还会造成固体废弃物对环境产生新的污染。
新型污泥干化池与一般干化池的区别在于:新型污泥干化池采用直立穿孔PVC管外包尼龙网,有效防止了污泥堵塞滤料间隙,延长了滤料更换时间,降低了使用成本,提高了污泥处理效果,且运行管理方便。
污泥干化场sludge drying hed一种底部排水的浅的污泥贮留池。液态污泥放人厚约2fuJ一3fl}mm的干化床内,经过污泥块和支承的砂层排水以及表面暴露在空气,扫的蒸发作用使污泥脱水。
污泥在良好的条件下经过IU--15天后,含水量可降至bf! `f'o。干化后的污泥被运走或作填埋处置。
2100433B
该技术核心特点是“超低能耗,无臭气产生”。
使用该技术处理含水率80%至85%的湿污泥,1度电即可脱水100公斤左右,是热干化技术处理的20倍左右;可将污泥含水率降至40%左右;污泥减量三分之二左右。处理的全过程没有臭气产生,不会造成二次污染。干化后的污泥可以资源化利用,如焚烧发电、制建材、堆肥等。