选择特殊符号

选择搜索类型

热门搜索

首页 > 百科 > 电气百科

行矩阵

行矩阵造价信息

  • 市场价
  • 信息价
  • 询价

矩阵

  • 产品说明:6.5G带宽,支持EDID读写,支持DVI-D格式,面板/红外/RS-232控制;品种:数字矩阵;型号:DH-DVI16-16B;类型:视频;规格:16入/16出
  • 东华盛业
  • 13%
  • 深圳市东华盛业科技有限公司重庆销售处
  • 2022-12-06
查看价格

矩阵

  • 产品说明:6.5G带宽,支持EDID读写,支持DVI-D格式,面板/红外/RS-232控制;品种:数字矩阵;型号:DH-DVI16-8B;类型:视频;规格:16入/8出
  • 东华盛业
  • 13%
  • 深圳市东华盛业科技有限公司重庆销售处
  • 2022-12-06
查看价格

矩阵

  • 产品说明:6.5G带宽,支持EDID读写,支持DVI-D格式,面板/红外/RS-232控制;品种:数字矩阵;型号:DH-DVI16-4B;类型:视频;规格:16入/4出
  • 东华盛业
  • 13%
  • 深圳市东华盛业科技有限公司重庆销售处
  • 2022-12-06
查看价格

矩阵

  • 产品说明:6.5G带宽,支持EDID读写,支持DVI-D格式,面板/红外/RS-232控制;品种:数字矩阵;型号:DH-DVI8-16B;类型:视频;规格:8入/16出
  • 东华盛业
  • 13%
  • 深圳市东华盛业科技有限公司重庆销售处
  • 2022-12-06
查看价格

矩阵

  • 产品说明:6.5G带宽,支持EDID读写,支持DVI-D格式,面板/红外/RS-232控制;品种:数字矩阵;型号:DH-DVI4-8B;类型:视频;规格:4入/8出
  • 东华盛业
  • 13%
  • 深圳市东华盛业科技有限公司重庆销售处
  • 2022-12-06
查看价格

渠盖板

  • 700*500*100(韶关 源友,车
  • 韶关市新丰县2021年11月信息价
  • 建筑工程
查看价格

渠盖板

  • 600*500*100(韶关 源友,车
  • 韶关市新丰县2021年11月信息价
  • 建筑工程
查看价格

渠盖板

  • 600*500*100(韶关源 友,车
  • 韶关市新丰县2021年1季度信息价
  • 建筑工程
查看价格

渠盖板

  • 700*500*100(韶关源件 友,车
  • 韶关市新丰县2020年3季度信息价
  • 建筑工程
查看价格

渠盖板

  • 800*500*150(韶关源件 友,车
  • 韶关市新丰县2020年3季度信息价
  • 建筑工程
查看价格

矩阵

  • AV0808矩阵
  • 9416台
  • 4
  • 中档
  • 含税费 | 不含运费
  • 2015-08-25
查看价格

矩阵

  • HDMI矩阵,网络音频媒体矩阵32*32
  • 1台
  • 1
  • 普通
  • 不含税费 | 含运费
  • 2016-10-09
查看价格

VGA矩阵

  • VGA矩阵
  • 1台
  • 1
  • 不含税费 | 不含运费
  • 2012-05-16
查看价格

AV矩阵

  • AV矩阵
  • 1台
  • 1
  • 不含税费 | 不含运费
  • 2012-05-16
查看价格

VGA矩阵

  • VGA矩阵
  • 7.0台
  • 3
  • 不含税费 | 不含运费
  • 2017-08-25
查看价格

行矩阵常见问题

查看详情

行矩阵文献

矩阵函数和函数矩阵 矩阵函数和函数矩阵

矩阵函数和函数矩阵

格式:pdf

大小:112KB

页数: 6页

矩阵函数求导 首先要区分两个概念:矩阵函数和函数矩阵 (1) 函数矩阵 ,简单地说就是多个一般函数的阵列, 包括单变量和多变量函数。 函数矩阵的求导和积分是作用在各个矩阵元素上,没有更多的规则。 单变量函数矩阵的微分与积分 考虑实变量 t 的实函数矩阵 ( )( ) ( )ij m nX t x t ×= ,所有分量函数 ( )ijx t 定义域相同。 定义函数矩阵的微分与积分 0 0 ( ) ( ) , ( ) ( ) . t t ij ijt t d d X t x t X d x d dx dx τ τ τ τ ? ? ? ??? ???= =? ??? ?? ?? ? ?? ?∫ ∫ 函数矩阵的微分有以下性质: (1) ( )( ) ( ) ( ) ( )d d dX t Y t X t Y t dt dt dt + = + ; (2) ( ) ( ) ( )( ) ( ) ( )

矩阵行列式 矩阵行列式

矩阵行列式

格式:pdf

大小:112KB

页数: 36页

矩阵行列式

满秩矩阵矩阵的秩

定义1:用初等行变换将矩阵A化为阶梯形矩阵, 则矩阵中非零行的个数就定义为这个矩阵的秩, 记为r(A),根据这个定义, 矩阵的秩可以通过初等行变换求得。需要注意的是, 矩阵的阶梯形并不是唯一的, 但是阶梯形中非零行的个数总是一致的。

定义2:在

中,若

(1)有某个r阶子式

;

(2)所有r 1阶子式

(如果有r 1阶子式的话)

称A的秩为r,记作R(A)=r。规定:R(O)=0.

,若R(A)=m,称A为行满秩矩阵;

若R(A)=n,称A为列满秩矩阵。

,若R(A)=n,称A为满秩矩阵(可逆矩阵,非奇异矩阵);

若R(A)

查看详情

阶梯形矩阵行最简形矩阵

若矩阵满足两条件:(1)它是行简化阶梯形矩阵;(2)非零首元都为1,则称此矩阵A为

行最简形矩阵。

1 0 0 1

0 1 0 -2

0 0 1 2

0 0 0 0

查看详情

满秩矩阵非奇矩阵

指的是方阵的行列式不为零的矩阵。如果用A表示该矩阵,那么非零矩阵可表示为│A│≠0。

查看详情

相关推荐

立即注册
免费服务热线: 400-888-9639