选择特殊符号
选择搜索类型
请输入搜索
Ultimate energy resolution on Ag FWHM≤0.5 eV;XPS energy resolution on PET FWHM≤0.85eV。
主要用于对样品表面进行元素种类测定、同种元素不同化学状态定性及定量分析等方面的表征。XPS的工作原理是用光子能量在1000~1500ev之间X射线去辐射样品,使原子或分子的内层电子或价电子受激发射出来成为光电子,测量光电子的能量,以光电子的动能/束缚能binding energy,(Eb=hv光能量-Ek动能-w功函数)为横坐标,相对强度(脉冲/s)为纵坐标可做出光电子能谱图,从而获得试样表面化学状态的有关信息。 2100433B
优点:原装进口电制冷探测器,可以快速分析从11Na到92U之间的全部元素,精度高、测量时间短,它可以广泛用于有色矿山、钢铁、水泥、耐火材料、不锈钢、合金等领域特点:1. 同时分析元素周期表中由钠(Na...
仪器是较新型X射线荧光光谱仪,具有重现性好,测量速度快,灵敏度高的特点。能分析F(9)~U(92)之间所有元素。样品可以是固体、粉末、熔融片,液体等,分析对象适用于炼钢、有色金属、水泥、陶瓷、石油、玻...
套完价,在工程设置中输入相应的建筑面积,这样才会相应的指标。
镀锌三价铬钝化膜的X射线光电子能谱研究
采用中性盐雾试验比较了酸性氯化钾镀锌层经3种不同钝化剂钝化处理后所得钝化膜的耐蚀性,采用X射线光电子能谱研究了不同钝化膜的厚度及组成。结果表明,SpectraMATETM 25彩色钝化所得钝化膜的耐蚀性最好,可以经受336 h以上的中性盐雾试验,TRI-V121钝化膜的耐蚀性次之,TRI-V120钝化膜最差。TRI-V120和TRI-V121蓝白钝化所得钝化膜的主要组成为Cr2O3,厚度均为200 nm左右,但后者的Cr含量较高,因此具有较高的耐蚀性;经SpectraMATETM 25彩色钝化所得钝化膜的组成为Cr(OH)3和Cr2O3,厚度约为800 nm,膜层厚是其具有高耐蚀性的主要原因。
竹木质素的红外光谱与X射线光电子能谱分析
应用傅里叶转换红外光谱(FTIR)和X射线光电子能谱(XPS),研究了3种提纯方法得到的竹木质素及其化学反应产物的化学结构特性.确定竹木质素C1s的电子结合能分别为283.52(C—H或C—C),284.58~285.72(C—OR或C—OH),286.10~286.44(C=O或HO—C—OR),287.65~287.72(O—C=O)eV.O1s的电子结合能分别为530.31(羟基氧原子),531.45~531.72(醛或酮的羰基氧原子),532.73~533.74(酯键或羧酸中的羰基氧原子)eV.竹木质素中的结构单元之间主要是通过醚键和碳碳单键连接,慈竹磨木木质素结构单元中醚键、碳碳单键、酯键、羰基和烯双键的比例为100∶63∶32∶40∶32(49.3∶31.0∶16.0∶19.9∶16.0).
1887年,海因里希·鲁道夫·赫兹发现了光电效应,1905年,爱因斯坦解释了该现象(并为此获得了1921年的诺贝尔物理学奖)。两年后的1907年,P.D. Innes用伦琴管、亥姆霍兹线圈、磁场半球(电子能量分析仪)和照像平版做实验来记录宽带发射电子和速度的函数关系,他的实验事实上记录了人类第一条X射线光电子能谱。其他研究者如亨利·莫塞莱、罗林逊和罗宾逊等人则分别独立进行了多项实验,试图研究这些宽带所包含的细节内容。XPS的研究由于战争而中止,第二次世界大战后瑞典物理学家凯·西格巴恩和他在乌普萨拉的研究小组在研发XPS设备中获得了多项重大进展,并于1954年获得了氯化钠的首条高能高分辨X射线光电子能谱,显示了XPS技术的强大潜力。1967年之后的几年间,西格巴恩就XPS技术发表了一系列学术成果,使XPS的应用被世人所公认。在与西格巴恩的合作下,美国惠普公司于1969年制造了世界上首台商业单色X射线光电子能谱仪。1981年西格巴恩获得诺贝尔物理学奖,以表彰他将XPS发展为一个重要分析技术所作出的杰出贡献。
X射线光电子能谱分析(X-ray photoelectron spectroscopy, XPS)是用X射线去辐射样品,使原子或分子的内层电子或价电子受激发射出来。被光子激发出来的电子称为光电子,可以测量光电子的能量,以光电子的动能为横坐标,相对强度(脉冲/s)为纵坐标可做出光电子能谱图,从而获得待测物组成。XPS主要应用是测定电子的结合能来实现对表面元素的定性分析,包括价态。 X射线光电子能谱因对化学分析最有用,因此被称为化学分析用电子能谱(Electron Spectroscopy for Chemical Analysis, ESCA) 。1887年,Heinrich Rudolf Hertz发现了光电效应。二十年后的1907年,P.D. Innes用伦琴管、亥姆霍兹线圈、磁场半球 (电子能量分析仪)和照相平版做实验来记录宽带发射电子和速度的函数关系。
对固体样品的元素成分进行定性、定量或半定量及价态分析。 固体样品表面的组成、化学状态分析,广泛应用于元素分析、多相研究、化合物结构鉴定、富集法微量元素分析、元素价态鉴定。此外在对氧化、腐蚀、摩擦、润滑、燃烧、粘接、催化、包覆等微观机理研究;污染化学、尘埃粒子研究等的环保测定;分子生物化学以及三维剖析如界面及过渡层的研究等方面有所应用。
XPS与某些分析方法的比较 :
方法名称 |
信息来源 |
分析方式 |
样品状态 |
样品用量(g) |
分辨率 |
灵敏度 |
真空(Pa) |
XPS |
表面<8nm |
非破坏 |
固、气、液 |
10-6~10-8 |
较低 |
10-18 |
1.33×10-4~1.33×10-9 |
吸收光谱 |
本体 |
非破坏 |
固、气、液 |
10-2~10-3 |
10-9 |
||
发射光谱 |
本体 |
破坏 |
固 |
10-12 |
|||
质谱 |
本体 |
破坏 |
固、气、液 |
10-3~10-4 |
高 |
10-13 |
1.33×10-2~1.33×10-5 |
NMR |
本体 |
非破坏 |
液(固 )(气) |
5×10-3 |
高 |
||
穆斯堡尔谱 |
表面 |
非破坏 |
固(Fe,Sn,稀土) |
10-3 |
|||
电子探针 |
表面 |
非破坏 |
固 |
10-16 |
1.33×10-1~1.33×10-3 |
||
离子探针 |
表面 |
破坏 |
固 |
10-11 |
|||
X射线荧光 |
表面 |
非破坏 |
固 |
10-17 |
1.样品表面1-12nm的元素和元素质量
2.检测存在于样品表面的杂质
3.含过量表面杂质的自由材料的实验式
4.样品中一种或多种元素的化学状态
5.一个或多个电子态的键能
6.不同材料表面12 nm范围内一层或多层的厚度
7.电子态密度测量
量化精确度:
分析时段
探测限制
分析区域限制
样品大小限制