选择特殊符号
选择搜索类型
请输入搜索
引力波会影响行星际航天器通信信号的返回时间,美国国家航空航天局和欧洲空间局都在进行侦测这一效应的实验。例如,对于正在木星和土星附近的航天器(包括卡西尼-惠更斯号等),其信号返回时间在2至4×103秒的数量级。引力波会导致信号时间的变化,如果事件的时间短于这一数量级,那么,按照三项公式这种变化样式会出现三次:一次是引力波经过地面的发射器,一次是经过航天器,一次是经过地面的接收器。搜寻这样的引力波信号需要在数据分析中采用模式匹配算法。利用两个不同的发射频率和很稳定的原子钟,灵敏度的量级估计可以达到10-13,并有可能进一步提高到10-15。
脉冲星是宇宙的计时器,其中,毫秒脉冲星的计时功能最为规律。毫秒脉冲星所发射的电磁辐射抵达地球的时间,可以被预测至纳秒精确度。由于脉冲星所发射的信号具有极高的规律性,所以可以从观察到在计时方面的不规律性,估算出随机背景引力波的上限。
脉冲星计时阵列用一组脉冲星的脉冲讯号抵达时间来寻找任何有关联的信息。在地球与脉冲星之间的时空会被通过的引力波弯曲,从而导致脉冲星所发射的脉冲讯号传播至地球的时间有所改变。由毫秒脉冲星组成的脉冲星计时阵列可以用来寻找有关联的改变,从而探测出引力波。
当今,主要有三个实验正在进行:北美纳赫引力波天文台、欧洲脉冲星计时阵列与帕克斯脉冲星计时阵列。为了共同分享实验数据,这三个实验团队又组成国际脉冲星计时阵列。未来,会有更多更具功能的实验陆续参与探测引力波,例如,平方千米阵与位于荷兰的低频阵列。
在低频波段(低于1赫兹),任何引力波源的低频引力波到达地球时,振幅都会比地球上的低很多;处于太空中的探测器则不会受到地球环境的影响。在欧洲空间局的LISA计划中,探测频率波段为0.0001赫兹至0.1赫兹的低频引力波,由三个同样的航天器组成边长为250万公里的等边三角形,整体沿地球轨道绕太阳公转。LISA的干涉臂长超过任何频率高于60毫赫兹的引力波的半波长,在这个范围内三项公式成立。每一个航天器内部都载有一个30cm望远镜与2瓦特激光系统。
与地面干涉仪不同的是,由于航天器相距很远,激光在传播途中的大幅衰减造成LISA不能使用单纯的平面镜来反射激光,采用光学锁相的办法,将要发射信号的相位锁至接收信号的相位上再将其发射出去。这一过程原理上是一个光学转发器,其效果和地面干涉仪的平面镜反射是相同的,本质上相当于激光从一个航天器发射,到达另一个航天器后再返回,这个延迟信号与本地的原始信号发生干涉,LISA主要就是测量这种干涉信号的相位。
对LISA而言,来自外界的影响主要是太阳的辐射压和太阳风的动压强。为了减小这些影响,满足广义相对论实验验证的严格要求,LISA采用了先进无阻尼技术,使用航天器本身作为内部测试质量的防护罩,保护测试质量不被外界影响,促使测试质量能够自己沿着测地线运动,呈自由落体状态,与航天器没有任何牵缠,航天器对测试质量的位置作出精确的监测,并且自动开启喷气来改变位置,使得自己与测试值量之间维持安全距离,避免任何接触。因此,航天器需要装制能够精确给出微小推力的推力器。为了成功达成任务,LISA必须具备三个关键技术:先进的推力器、超灵敏的加速度计、能够连续几年稳定发射2瓦特功率的红外激光。于2015年发射升空的激光干涉空间天线开路者号(LISA Pathfinder)已成功测试了这些技术,为LISA铺设了康庄大道。
欧洲空间局计划于2030年发射LISA,任务为期4年,可延长至10年。LISA的主要的任务为,研究银河系内的双星系统的形成与演化、探查致密星体绕著大质量黑洞的公转动力学、追溯超大质量黑洞的并合起源与演化、解析恒星黑洞的天体物理学、探索引力与黑洞的基本秉性、估算宇宙膨胀的速率、了解随机引力波背景的起源与意涵。
除了LISA以外,另外还有几个在空间类似运作的激光干涉引力波探测器计划。分赫引力波干涉天文台计划的操作频带为0.1-10Hz,在LISA与地面探测器的操作频带之间,主要目的是直接观测宇宙的初始,即在大爆炸后10-10秒之瞬间,从而试图揭露宇宙的奥妙起源。更具野心的大爆炸天文台是美国太空总署的计划,操作频率与分赫引力波干涉天文台 相同,意图探测宇宙暴胀所导致的引力波背景。
“共振质量探测器”分为两类:“棒状探测器”与“球状探测器”。棒状探测器的灵敏度主要源自于圆柱体尖锐的共振频率,其半峰全宽通常只有一到几个赫兹。通常铝质圆柱体长约3米,共振频率大约在500赫兹至1.5千赫兹之间,质量约为1000千克,用细丝悬挂起来。当引力波照射到圆柱时,圆柱会发生谐振,继而可以通过安装在圆柱周围的压电传感器检测到。假设一个波幅为
共振质量探测器主要会遭遇到三种噪声:热噪声、传感噪声和量子噪声。为了要测量到引力波的波幅,必须尽量削减这些噪声。
原本的韦伯棒状探测器的运作温度为室温。为了削减热噪声,当今,最先进的棒状探测器之一AURIGA的运作温度为0.1K。
当今最具规模的激光干涉引力波天文台(LIGO)主要是由加州理工学院和麻省理工学院负责运行,它也是美国国家科学基金会资助的最大科研项目之一。LIGO在两个站点建造有三台探测器,在华盛顿州的汉福德(Hanford)建有双臂长度分别为4千米和2千米的两台探测器(LIGO Hanford Observatory,简称LHO),而在路易斯安那州的利文斯顿建有一台双臂长度为4千米的探测器(LIGO Livingston Observatory,简称LLO),相距汉福德3002千米。LIGO采用了多种尖端科技。LIGO的防振系统能够压抑各种振动,真空系统是全世界最大与最纯的系统之一,光学器件具备前所未有的精确度,能够测量比质子尺寸还小一千倍的位移,电算设施的高超功能足以处理庞大实验数据。。2002年起,LIGO正式启动数据采集工作,至2010年共执行了六次科学探测工作之后计划结束,最佳灵敏度已经达到10的数量级。
2009至2010年,LIGO升级为Enhanced LIGO并进行了第六次科学探测,即S6。其激光功率从10瓦特提高到30瓦特以上,探测范围可扩大8倍。在2010年与2015年之间,LIGO进行了名为“先进LIGO”(Advanced LIGO)的升级计划,简称aLIGO。2015年,aLIGO正式投入使用,激光功率从初始版LIGO的10瓦特提升至200瓦特左右,探测频带下限从40Hz延伸到10Hz,灵敏度比初始版LIGO高出10倍,这意味着aLIGO能够探测引力波的距离比先前高出10倍,探测范围也扩大1000倍以上,能够探测到的可能引力波波源比先前多出1000倍。
处女座干涉仪(VIRGO)位于意大利比萨附近,是一架双臂长度为3千米的地面激光干涉仪,所在地点也叫做欧洲引力波天文台(European Gravitational Observatory)。VIRGO自2007年起开始进行科学观测,并且参与了S5的最后部分探测工作,VIRGO具有和LIGO相媲美的灵敏度。在进行了大约五年,2千4百万欧元的升级之后的处女座干涉仪,称为“先进VIRGO”,于2017年8月1日正式加入LIGO两个探测器搜索引力波,这三个探测器共同运作应该能够较为精确地给出引力波波源的位置。
日本计划在2019年建成神冈引力波探测器(KAGRA),它的600米长的干涉臂被深埋在200米的岩石下,它的测试质量也会被降温至20K。物理学者认为,这两个手段将能减低噪声,因此提高灵敏度。
GEO600位于德国汉诺威,是双臂长度为600米的探测器,其工作带宽为50赫兹至1.5千赫兹。GEO600自2002年起开始科学探测。
最早实际投入运作的引力波探测器是1960年代美国马里兰大学的约瑟夫·韦伯制造的铝质实心圆柱,通常称为“棒状探测器”,是一种“共振质量探测器”。1969年,韦伯宣称他的探测器得到了可靠的结果,立刻引起轰动,但是后来的重复实验都得到了零结果。此后意大利、澳大利亚、美国的科学家相继建造了类似的铝质圆柱形探测器,有的采取了更复杂的减振、低温、真空等措施排除干扰,但是都没有得到令人信服的证据。
1962年,俄国物理学者麦可·葛特森希坦与弗拉基斯拉夫·普斯投沃特最早发表论文提议建造干涉仪来寻找引力波,可是,这点子并未获得重视。四年后,弗拉基米尔·布拉金斯基再度提出这点子,然而仍旧无疾而终。后来,约瑟·韦伯与莱纳·魏斯也分别独立发表出类似点子。韦伯的学生罗伯特·弗尔沃德在休斯研究实验室工作时,受到魏斯的鼓励,决定使用休斯研究实验室的经费来制造一台干涉仪。1971年,弗尔沃德首先建成臂长8.5m的雏型引力波干涉仪,经过150小时的探测以后,弗尔沃德报告,并未探测到引力波。
70年代,魏斯团队在麻省理工学院、汉斯·彼林团队在德国加兴的马克斯·普朗克研究所、朗纳·德瑞福团队在格拉斯哥大学,分别建成并且投入运行雏型引力波干涉仪。同时期,基普·索恩在加州理工学院组成了实验引力波团队。1979年,他特别从格拉斯哥大学聘请德瑞福来领导这团队,并且建造引力波干涉仪。1983年,在加州理工学院,索恩与德瑞福联手建成一台40m臂长的引力波干涉仪。在麻省理工学院的魏斯团队,由于申请到较少实验经费,只能建成一台1.5m臂长的引力波干涉仪。两个团队激烈地兢争,试图计划与建造更灵敏、更先进的引力波干涉仪。1984年,为了更有效率地运用有限资源,加州理工学院与麻省理工学院同意合作设计与建造激光干涉引力波天文台(LIGO),并且由基普·索恩、朗纳·德瑞福与莱纳·魏斯共同主持这计划。
1999年,在路易斯安那州的利文斯顿与在华盛顿州的汉福德分别建成相同的探测器。2002年正式进行第一次探测引力波,2010年结束搜集数据。在这段时间内,并未探测到引力波,但是整个团队获得了很多宝贵经验,灵敏度也越加改善。在2010年与2015年之间,LIGO又经历大幅度改良,升级后的探测器被称为“先进LIGO”(aLIGO),于2015年再次开启运作。
另外,还有一些正在建造或运作中的地面干涉仪,例如,法国和意大利合作建造的处女座干涉仪(VIRGO)(臂长3000米)、德国和英国合作的GEO600(臂长600米)、以及日本正在建造中的神冈引力波探测器(KAGRA)(臂长3000米)等。另外,欧洲空间局(ESA)正在建造未来在太空中运行的激光干涉空间天线(LISA),其将会被用来探测低频引力波信号。
经过多年不懈努力,LIGO科学团队与VIRGO团队终于在2015年9月14日探测到两个黑洞并合所产生的引力波。之后,在2015年12月26日、2017年1月4日、2017年8月14日分别三次探测到两个黑洞并合所产生的引力波,又在2017年8月17日探测到两个中子星并合所产生的引力波事件,这标志着多信使天文学的新纪元已经来临。
附图,按烟感探测器,修改主材就可以
对浓度的检测要求不同 。
感烟式火灾探测器分为点型与线型,点型分为离子型感烟和光电型感烟,线型分为激光感烟分离式红外光束感烟。 它是对警戒范围内某一线状窄条周围烟气参数响应的火灾探测器。它同前面两种点型感烟探测器的主要区别在于...
LIGO 使用的干涉仪是迈克耳孙干涉仪,其应用激光光束来测量两条相互垂直的干涉臂的长度差变化。在通常情况下,不同长度的干涉臂会对同样的引力波产生不同的响应,因此干涉仪很适于探测引力波。在每一种干涉仪里,通过激光光束来量度引力波所导致的变化,可以用数学公式来描述;换句话说,假设从激光器发射出的光束,在传播距离L之后,被反射镜反射回原点,其来回过程中若受到引力波影响,则行程所用时间将发生改变,这种时间变化可以用数学公式来坐定量描述。
更仔细地描述,假设一束引力波是振幅为h的平面波,其传播方向与激光器的光束传播方向的夹角为
伯纳德·舒尔茨把这一公式称作“三项公式”,其为分析所有干涉仪对信号响应的出发点。单径系统也可以使用三项公式 ,但其灵敏度是被时钟的稳定性所限制。干涉仪的两条干涉臂可以相互用来当做时钟比较,因此,干涉仪是非常灵敏的光束探射器。
假设干涉臂长超小于引力波的波长,则干涉臂与引力波相互作用的关系可近似为
假设引力波传播方向垂直于光束传播方向,即两者之间的夹角为{\displaystyle heta =\pi /2},则三项公式变为
注意到这导数只跟返回时的引力波振幅
因此,只要能够量度返回电磁波的红移,则可估算引力波振幅的改变。假设干涉臂长超小于引力波的波长,则干涉臂与引力波相互作用的近似关系式为
引力波对于干涉仪所产生的响应是这两个关系式的差值:
LIGO的长度为4千米的干涉臂由振幅为10的引力波所引起的长度变化为:
主要影响激光干涉仪的噪声可以分为两大类:“位移噪声”与“传感噪声”。位移噪声是因实验器具的移动而形成的噪声,例如,地噪声、热噪声。传感噪声是对于实验器具的微小位移所进行的量度而产生的噪声,例如,散粒噪声。
散粒噪声是一种量子噪声,此外还存在类似于棒状探测器表面出现的量子噪声,例如反射镜表面零点能的振动等,这种量子噪声的极限都由海森堡不确定性关系式
引力梯度噪声源自于于当地的牛顿引力场在测量时间尺度内的变化,又称为“牛顿噪声”。引力波探测器不单会对引力波产生响应,还会同样地对当地的潮汐力产生响应,两者实际上无法区分。这些源自于当地的牛顿噪声包括人造干扰,例如仪器、车辆等外界力的干扰,更重要的是自然噪声,例如地震波所引起的引力场变化以及空气气压变化所引起的空气密度变化等。噪声的频谱随着频率升高而急剧下降,因此对于第一代的干涉仪这不是一个问题,但有可能会对下一代干涉仪的灵敏度造成限制,也是频率在1赫兹以下的低频引力波必须在宇宙空间中探测的主要原因。
由于牛顿噪声直接与测试质量耦合,越过了所有机械削减手段,因此无法使用任何地震滤波器或防护罩来压抑牛顿噪声。在地球表面,在频率低于10赫兹,牛顿噪声会掩盖过引力波信号。因此,像爱因斯坦望远镜一类的新一代引力波干涉仪,很可能必须建造在地下洞内部的噪声较低的区域。在20赫兹频率,为了要满足爱因斯坦望远镜的普通灵敏度要求,牛顿噪声必须被压抑10倍。忽略其它噪声,在1赫兹频率,牛顿噪声必须被压抑1000倍,才有可能探测到引力波。
探测器“闹”太空
从远古时期开始,人们更对广袤的星空充满好奇,随着科技的发展,人类有能力飞出地球、进入太空,迄今为止,人类已经向太阳系所有行星(除地球外)发射了探测器,太空逐渐变得热闹起来。月球车1号"月球车1号"是世界上第一辆无人驾驶月球车,着陆于1970年11月17日。这辆月球车长2.2米、宽1.6米、重756千克,由轮式底盘和仪器舱组成其外形像个圆桶,上面有一个凸起的盖子,车下面是8个轮子,每个轮子都是独立控制,通过电机驱动并使用电磁继电器制动。车上的装备包括一架锥形天线、一个高精度定向螺旋天线、4台电视摄像机以及一些用来测量月壤密度和物理化学特征的设备。"月球车1号"在月球上行程10余公里,考察了8万平方米月面地域,拍撮了200幅月
甲烷CH4探测器瓦斯探测器天然气探测器沼气探测器
深圳市深国安电子科技有限公司 SHENZHEN SINGOAN ELECTRONIC TECHNOLOGY CO.,LTD 地址:深圳市龙华新区民治大道牛栏前大厦 C507 联络人:张工 138 2320 5464 电话: 0755-8525 8900 邮 箱: singoan@163.com 网址:www.singoan.com www.singoan.com.cn 甲烷检测仪 SGA-500E-CH4 一、产品简介 SGA-500E-CH4甲烷检测仪是深国安电子运用十多年技术经验, 独立研发设计的一款固定式、 无显示型甲烷气体检测仪。 产品信号默认为 RS485。产品运用当前最先进的微电子处理技术, 搭配国外原装进口气体传感器, 可快速、 准确地检测目标气体。本质安全型电路设计, 配备 铝合金防爆外壳,即使恶劣环境下,也能安全使用。 SG
棒状引力波探测器是最早的一种引力波探测器,是20世纪60年代美国马里兰大学的约瑟夫·韦伯(Joseph Weber)首先制造的[1],因此也称为韦伯棒(Weber bar)。采用铝质实心圆柱,长2米,直径1米,用细丝悬挂起来。这样的圆柱具有很高的品质因子(阻尼系数的倒数),振动时的能量损失率很小,本征频率在1k赫兹以上。当引力波照射到圆柱上时圆柱会发生谐振,继而可以通过安装在圆柱周围的压电传感器检测出来。它的缺点是容易受到地震、空气振动、温度和湿度变化、空气分子布朗运动的干扰。为排除这些干扰,韦伯在相距1000公里的地方放置了两个相同的棒状探测器,只有两个探测器同时检测到的振动才被记录下来。1968年,韦伯宣称他的探测器得到了可靠的结果,立刻引起轰动,但是后来的重复实验都得到了零结果,并且发现韦伯的棒状探测器的噪声远远大于引力波带来的响应。此后意大利、澳大利亚、美国的科学家都相继建造了类似的铝质圆柱形探测器,有的采取了更复杂的减震、低温、真空等措施排除干扰,如意大利在罗马附近建造的重2.3吨、温度冷却到0.1K的棒状波探测器。但是这些探测器都没有得到令人信服的证据。
我们也知道,物体都有引力,会产生引力场。爱因斯坦在发表广义相对论后不久,预言引力场具有波动性质的引力振荡,加速运动的质量(引力源)也辐射引力波。由于电磁波是由光子传递的 ,爱因斯坦假定引力波是由引力子传递的。
广义相对论认为,物质的质量使时空弯曲,引力就是时空弯曲的量度。如果把宇宙时空比做一块橡胶板,质量不同的天体会在橡胶板上压出深浅不同的坑,即引力阱。天 体运动就是在自己的引力阱中滚动,这种滚动会引起橡胶板的轻微波动,而当超新星爆发和黑洞碰撞时,由于质量(即引力)的突然变化,相当于质量在橡胶板上大力弹跳,因而引起橡胶板剧烈地上下抖动。这种波动和抖动就是引力辐射,即引力波。
这么说来,地球绕太阳的公转运动也会产生引力波。是的。不过它的能量很微小,只有千分之一瓦。因为引力是各种基本力中最弱的力。如在原子核中,核力是电磁力的100倍,而引力只有电磁力的1040分之一;相隔1厘米的两个质子,其引力作用只有静电力的1037分之一。因此,引力辐射非常微弱,一万亿千瓦的引力辐射,只相当于1千瓦的热电丝。
但是,由于引力总是相加的,因而高致密度的恒星如果以接近光速的速度运动时,可产生不可忽略的引力波。靠得很近的双星脉冲星会发射很强的引力波。超新星爆发等剧烈活动,可在几微秒之内产生很强的一次性的引力波,叫引力辐射爆发。旋转黑洞是最丰富的引力辐射源,特别是当两颗旋转黑洞相撞时,会产生强烈的引力辐射。如质量各是10倍太阳质量的黑洞相撞,其引力辐射的强度是银河系的电磁辐射强度的1000亿倍。
为什么引力辐射的强度当其小时非常弱,而当其大时又非常强呢?除了引力源的质量和运动速度因素外,其重要原因是,由加速质量产生的引力波,本身又是一个引力波辐射源,即引力波又产生引力波。
引力波确实存在吗?人们试图用实验去检验。理论上,弹簧振子可产生引力波。所谓弹簧振子,是在一根弹簧两端各连接一个有一定质量的物体。如果让它振动起来,就会产生引力波。因此也叫"引力振子"。还有,一根绕其中心垂直轴旋转的重棒,也会产生引力波。 不过用上述方法产生的引力波的能量小得可怜。如重500吨、长20米的钢棒,以5转/秒的速度(这是它强度极限以内的最大旋转速度)旋转,所产生的引力波能只有10~29瓦。一个长10厘米的弹簧,两端各重1千克物体组成的引力振子,以100次/秒、振幅1厘米的速度振荡,若将其全部引力波能转变为电能,要点亮一只50瓦的灯泡,则需要的振子数,比组成地球的全部基本粒子数还多。
由此可见,用上述人工实验的方法是难以检验到引力波的。因为即使实验产生了引力波,也还没有如此精密的仪器能检测到它所产生的微弱引力波。那么,要验证引力波理论,就只好探测宇宙中巨大的天然引力波了。
某些极端天体现象,比如两颗恒星级黑洞相互环绕并逐渐靠近,最终合并为一个大黑洞的过程,如果它们的附近极少气体尘埃和其他星体,那么,我们就不可能从电磁辐射中探知这一过程,而这一过程也没有中微子等其他辐射,探测这一过程的唯一办法就是上述过程中辐射出的引力波。
缺点是引力波通常极弱,只有少数的极端天体现象中,涉及的质量极大,物质运动的加速度也极大,而且离我们也不太远时,我们才能探测到引力波。这注定引力波望远镜在可预见的未来不会成为主流的常规的天文探测手段。