选择特殊符号
选择搜索类型
请输入搜索
液力耦合器出现的时间最早,属于损耗功率控制型(机械)调速。但是随着技术的进步,液力耦合器逐渐显现了以下的局限性:
1、液力耦合器是由电机的机械轴输出端与液力耦合器的机械轴连接;由液力耦合器改变速度通过液力耦合的输出端与风机的机械轴连接。风机与电机的距离较远,效率很差。需提供较大的安装空间,基础复杂。
2、由于液力耦合器的两端出轴为两个半轴,径向跳动大,在短时间内就会造成设备漏油。这样必然会导致机械轴及轴承干磨。因而,故障率较高。
3、液力耦合器属于一种机械调速设备。液力耦合器的原理决定了液力耦合器有8-10%的速度损失。同时功率损失变为热量,使液压油温过高。需要大量冷却水冷却液压油。
4、在实际运行中油温高于95℃以上,使冷却器的水易结垢堵塞,造成故障。
5、由于液力耦合器是用液压油传递功率,因此速度控制不稳定、功率因数低、调速精度差。
6、当液力耦合器故障时,设备只能停止运行。严重影响生产。
7、液力耦合器整机效率低,调速本身的损耗大、维护量大、二次成本过高。
8、液力耦合器属于损耗功率控制性的调速设备,根据国家落实节能节排的政策,液力耦合器已经不是推广使用的产品,从生产的安全性及运行的成本角度分析,液力耦合器已经不适合市场使用,必将被其他的电磁控制功率型的高效节能调速装置所代替。
液力耦合器曾应用于早期的汽车半自动变速器及自动变速器中。液力耦合器的泵轮与发动机的飞轮相连接,动力由发动机曲轴传入。在有些时候,耦合器严格上讲是飞轮的一部分,在这种情况下,液力耦合器又被称为液力飞轮。涡轮与变速器的输入轴相联。液体在泵轮与涡轮间循环流动,使得力矩从发动机传至变速器,驱动车辆的前进。在这方面,液力耦合器的作用非常类似于手动变速器中的机械离合器。由于液力耦合器无法改变转矩的大小,现已被液力变矩器所取代。
可用于冶金设备,矿山机械,电力设备,化工及各种工程机械中。 解读词条背后的知识
(1)具有柔性传动自动适应功能。
(2)具有减缓冲击和隔离扭振功能。
(3)具有改善动力机启动能力,使之带载荷或空载启动功能。
(4)具有在外载荷超载时保护电机和工作机不受损坏的过载保护功能。
(5)具有协调多动力机顺序启动、均衡载荷和平稳并车功能。
(6)具有柔性制动减速功能(指液力减速器和堵转阻尼型液力耦合器)。
(7)具有使工作机延时缓慢启动功能,能平稳地启动大惯量机械。
(8)对环境的适应性强,可以在寒冷、潮湿、粉尘、需防爆的环境下工作。
(9)可以使用廉价的笼型电机替代价格昂贵的绕线式电机。
(10)对环境没有污染。
(11)传递功率与其输入转速的平方成正比,输入转速高时,能容量大,性能价格比高。
(12)具有无级调速功能,调速型液力耦合器可以在输入端转速不变的条件下,通过在运行中调节工作腔的充液量而改变输出力矩和输出转速。
(13)具有离合功能,调速型和离合型液力耦合器,可以在电机不停止转动的条件下,使工作机启动或制动。
(14)具有扩大动力机稳定运行工作范围功能。
(15)具有节电效果,能降低电机的启动电流和持续时间,降低对电网的冲击,降低电机的装机容量,大惯量难启动机械应用限矩型液力耦合器和离心式机械应用调速型液力耦合器节能效果显著。
(16)除轴承、油封外无任何直接机械摩擦,故障率低,使用寿命长。
(17)结构简单,操作维护简便,不需要特别复杂的技术,养护费用低。
(18)性能价格比高,价格低廉,初始投资少,投资回收期短。
(1)始终存在转差率,有转差功率损失,限矩型液力耦合器的额定效率约等于0.96,调速型液力耦合器与离心式机械匹配相对运行效率在0.85~0.97之间。
(2)输出转速始终低于输入转速,且输出转速不能像齿轮传动那样准确不变。
(3)调速型液力耦合器需要附加冷却系统,增加投资费用和运行费用。
(4)占地面积较大,需要在动力机与工作机之间占有一定空间。
(5)调速范围相对较窄,与离心机械匹配调速范围为1~1/5,与恒力矩机械匹配调速范围为1~1/3。
(6)无变矩功能。
(7)传递功率的能力与其输入转速的平方成正比,输入转速过低时,耦合器规格增大,性能价格比降低。
您好,液力耦合器和液力变矩器都是借助于工作液体的动量矩改变产生液力转矩 来传递动力的,不同的是液力偶合器是两个轮子,一个主动的泵轮一个从动的涡轮,它可以将转矩较为柔和的从泵轮传到涡轮,但转矩的大小不会...
一般加乳化液或水,规程规定液力耦合器严禁注油(除可调速液力耦合器以外)。加油会造成爆炸、火灾等。
主要区别是传动比不一样,另外就是应用范围不一样。1、液力耦合器也称液力联轴节,机械联轴节你应该知道,比如十字联轴器、梅花形弹性联轴器等,因此液力耦合器的传动比为1,保持不变.2、但是液力变矩器可以实现...
液力耦合器是以液体为工作介质的一种非刚性联轴器。液力耦合器(见图)的泵轮和涡轮组成一个可使液体循环流动的密闭工作腔,泵轮装在输入轴上,涡轮装在输出轴上。两轮为沿径向排列着许多叶片的半圆环,它们相向耦合布置,互不接触,中间有3mm到4mm的间隙,并形成一个圆环状的工作轮。驱动轮称为泵轮,被驱动轮称为涡轮,泵轮和涡轮都称为工作轮。泵轮和涡轮装合后,形成环形空腔,其内充有工作油液。
泵轮通常在内燃机或电机驱动下旋转,叶片带动油液,在离心力作用下,这些油液被甩向泵轮叶片边缘,由于泵轮和涡轮的半径相等,故当泵轮的转速大于涡轮转速时,泵轮叶片外缘的液压大于涡轮叶片外缘的液压,由于压差液体冲击涡轮叶片,当足以克服外阻力时,使涡轮开始转动,即是将动能传给涡轮,使涡轮与泵轮同方向旋转。油液动能下降后从涡轮的叶片边缘又流回到泵轮,形成循环回路,其流动路线如同一个首尾相连的环形螺旋线。液力耦合器靠液体与泵轮、涡轮的叶片相互作用产生动量矩的变化来传递扭矩。在忽略不计叶轮旋转时的风损及其他机械损失时,它的输出(涡轮)扭矩等于输入(泵轮)扭矩。
液力耦合器曾应用于早期的汽车半自动变速器及自动变速器中。液力耦合器的泵轮与发动机的飞轮相连接,动力由发动机曲轴传入。在有些时候,耦合器严格上讲是飞轮的一部分,在这种情况下,液力耦合器又被称为液力飞轮。涡轮与变速器的输入轴相联。液体在泵轮与涡轮间循环流动,使得力矩从发动机传至变速器,驱动车辆的前进。在这方面,液力耦合器的作用非常类似于手动变速器中的机械离合器。由于液力耦合器无法改变转矩的大小,现已被液力变矩器所取代。
可用于冶金设备,矿山机械,电力设备,化工及各种工程机械中。
(整理)变频器与液力耦合器的比较.
精品文档 精品文档 变频器与液力耦合器的比较 1、带式输送机对驱动控制的要求 由于大运量、长距离带式输送机的驱动功率大, 需用多台电动 机驱动,且多采用中、高压供电,因此在对电机的驱动控制方面有着 许多更高的和特殊的要求,主要有以下几点: (1)电机的启动电流要小,以减少对电网造成大的冲击,避免 造成输送机重载启动困难和对传动设备的猛烈冲击; 同时 减小对电网上其他设备正常工作的影响。 (2)电机的启动力矩要大, 特别是要保证重载启动时有足够的 力矩。 (3)驱动控制装置长期运行的可靠性要高。 (4)多电机驱动时功率平衡的精度要高。 (5)保证多电机驱动时各电机速度同步的精度要高。 (6)起、制动过程要平稳,以避免胶带和滚筒之间的打滑现象。 (7)驱动控制方式有利于节能降耗 。 (8)使用方便,维护成本低,提高整个系统的运营效益 。 2、变频驱动和液力耦合器驱动的比较 比较项目 变频驱动
给水泵液力耦合器构造介绍
给水泵液力耦合器构造介绍
本标准规定了液力耦合器的分类、技术要求、试验方法、检验规则、标志、包装和贮存。本标准适用于普通型、限矩型和调速型耦合器。2100433B
本标准规定了液力耦合器的分类、技术要求、试验方法、检验规则、标志、包装和贮存。本标准适用于普通型、限矩型和调速型耦合器。
液力传动是液体传动的一种,原理是把机械能转换为液体的动能,再将液体的动能转换为机械能,从而完成能量的传递。常见的有液力耦合器、液力变矩器和液力机械元件。
液力耦合器主要由泵轮和涡轮组成。泵轮是驱动轮,装在输入轴(如发动机的飞轮),它能接受原动机传来的机械能并将其转换为液体的动能;涡轮是从动轮,装在输出轴上(如变速器的输入轴)。它将液体的动能转换为机械能而输出;两个工作轮相向耦合布置,互不接触,沿径向排列着许多叶片。
液力耦器的结构
液力耦合器其结构主要由壳体、泵轮、涡轮三个部分组成,泵轮和涡轮相对安装,统称为工作轮。在泵轮和涡轮上有径向排列的平直叶片,泵轮和涡轮互不接触。两者之间有一定的间隙(约3mm一4mm );泵轮与涡轮装合成一个整体后,其轴线断面一般为圆形,在其内腔中充满液压油。
液力耦合器的安装方式
液力耦合器的输入轴与电动机联在一起,随电动机的转动而转动,是液力耦合器的主动部分。涡轮和输出轴连接在一起,是液力耦合器的从动部分,与负载连在一起。
在安装时,液力耦合器安装在电动机与负载之间,通常由于负载较大,且与其它设备有联锁,采用将电机后移方案,在改造方案中需重新做电机的基础。