选择特殊符号
选择搜索类型
请输入搜索
目前被普遍认识的是RCC电路对元件、布线、生产工艺要求很高。使用劣质元件、水准不高的布板、变压器绕制不恰当都可能导致RCC电路无法工作,或在正常工作一段时间后失效。常见失效模式包括但不限于:
RCC最常见也最典型的失效现象是主开关管烧毁。大部分此类故障是由变压器基极线圈漏感导致的。 变压器基极线圈的漏感和基极串联的电阻形成LR低通滤波电路,对电流信号有延迟作用,导致在集电极电压上升时,基极电流减小的正反馈出现延迟。而这样的延迟对于绝大部分双极型开关管是致命的,它导致晶体管越出安全工作区,以及发热量过大,最终导致不可逆的二次击穿。
此类故障较少出现在使用功率MOSFET制作的RCC上,因为功率MOSFET的安全工作区远大于双极型晶体管。并且功率MOSFET为电压控制型,开通/关断阈值范围窄,MOSFET较为不易出现同时承受大电流和高电压的情况,即使偶尔出现也不会发生不可逆的失效。 曾经有一批基于MOSFET的RCC电源常常因开关管损坏而失效,经查证,是因为厂家技术考虑不周,机械模仿110V地区产品,在220V交流线路(整流后电压高达311V)上,使用了耐压500V的MOSFET(型号是IRF840)。
另一常见的问题是输出电压明显超过设计输出电压,导致负载过热、烧毁。特别是当负载为锂离子电池时,输出过高电压极端危险,可能导致电池内部气体液体泄漏甚至爆炸。 原因一是变压器绕组间不完全耦合,存在漏感,导致互调整率差。在变换器处于轻载状态,占空比小的时候,此问题更加严重。二是和集成芯片中包含的运算放大器(放大倍数高达数百倍、数千倍)相比,电压环路开环增益太小,精确稳压困难。
并且这两个缺点几乎是不可能同时妥善解决的。解决二次击穿问题要求基极线圈和主线圈近绕以保持耦合良好,而解决输出电压不稳的问题要求次级线圈和基极线圈近绕,又要求初次级之间数千伏的电气隔离。在有限绕线位置的变压器骨架下,要达到这两个矛盾的目的,是十分困难的。
目前被普遍认识的是RCC电路对元件、布线、生产工艺要求很高。使用劣质元件、水准不高的布板、变压器绕制不恰当都可能导致RCC电路无法工作,或在正常工作一段时间后失效。常见失效模式包括但不限于:
RCC最常见也最典型的失效现象是主开关管烧毁。大部分此类故障是由变压器基极线圈漏感导致的。 变压器基极线圈的漏感和基极串联的电阻形成LR低通滤波电路,对电流信号有延迟作用,导致在集电极电压上升时,基极电流减小的正反馈出现延迟。而这样的延迟对于绝大部分双极型开关管是致命的,它导致晶体管越出安全工作区,以及发热量过大,最终导致不可逆的二次击穿。
此类故障较少出现在使用功率MOSFET制作的RCC上,因为功率MOSFET的安全工作区远大于双极型晶体管。并且功率MOSFET为电压控制型,开通/关断阈值范围窄,MOSFET较为不易出现同时承受大电流和高电压的情况,即使偶尔出现也不会发生不可逆的失效。 曾经有一批基于MOSFET的RCC电源常常因开关管损坏而失效,经查证,是因为厂家技术考虑不周,机械模仿110V地区产品,在220V交流线路(整流后电压高达311V)上,使用了耐压500V的MOSFET(型号是IRF840)。
另一常见的问题是输出电压明显超过设计输出电压,导致负载过热、烧毁。特别是当负载为锂离子电池时,输出过高电压极端危险,可能导致电池内部气体液体泄漏甚至爆炸。 原因一是变压器绕组间不完全耦合,存在漏感,导致互调整率差。在变换器处于轻载状态,占空比小的时候,此问题更加严重。二是和集成芯片中包含的运算放大器(放大倍数高达数百倍、数千倍)相比,电压环路开环增益太小,精确稳压困难。
并且这两个缺点几乎是不可能同时妥善解决的。解决二次击穿问题要求基极线圈和主线圈近绕以保持耦合良好,而解决输出电压不稳的问题要求次级线圈和基极线圈近绕,又要求初次级之间数千伏的电气隔离。在有限绕线位置的变压器骨架下,要达到这两个矛盾的目的,是十分困难的。 2100433B
RCC由一个主开关晶体管、一个变压器和一些电阻、电容、二极管组成,并不包含集成芯片。不包含集成芯片,使得RCC的成本较采用集成芯片的电源电路为低。但随着集成电路芯片的降价(如今一个芯片的价格仅为人民币0.5元左右),RCC的成本优势已经非常弱。
传统的RCC一般采用功率三极管(BJT)作为开关管。较新的设计采用了金属-氧化物-半导体场效应管(MOSFET),以实现更低功耗以及准谐振等功能。
RCC的变压器由三个或以上的绕组组成,包含输入侧的一个主输入绕组,一个反馈绕组以及输出侧的一个或多个输出绕组。和所有的反激变换器一样,这个变压器需要承受大的直流偏磁。
辅助电路需要二极管、电阻、电容等,实现电流限制、电压限制等功能。
RCC的功率部分如同普通的反激变换器一样操作。信号和控制部分原理如下:
1.当加入输入电压Vin(电阻RG连接Tr1的基极),电流Ib流过Rb,Tr1导通,此Ib为启动电流。Tr1的collector电流Ic波形一般从0开始。
2. Tr1一旦进入ON状态,transformer的P1线圈已加入输入电压Vin,因此P2线圈形成的电压为Tr1提供了基极电流,使得Tr1可以保持导通。
3. Tr1的集电极电流成斜坡状上升,直到电流为βIb,此时基极电流无法维持Tr1晶体管饱和导通,晶体管集电极--发射极之间的电压上升。而这里的电压上升使得变压器Np上的输入电压下降,更导致Ib下降。于是形成了正反馈,使得Tr1最终关闭。
4. Tr1关闭后如同其他反激变换器一样,储存在变压器内部的能量流到次级电容里,为负载供电。在变压器内部能量未释放完时,基极一直被次级反射来的负电压下拉,晶体管保持关闭。变压器内部能量释放完毕后,电路工作状态转入第1步,形成周期性循环。
5.如果在集电极有较大电流时使用其他方法导致基极电流不足,也可以触发正反馈机制关断晶体管Tr1。这一特点常用于实现电流限制和稳压。(即在电流或电压过大时减小占空比或禁止晶体管开通)
基本的RCC电路天然有着限制峰值电流的特征。由于基极电阻的限流作用,基极电流无法超过Vin/Np*Nb/Rb,从而让集电极电流在超过βIb时触发正反馈关断机制。 实际应用中,这种限流是不准确的,因为晶体管的β离散性很大(同种型号晶体管β可以相差4倍),并且输入电压Vin不固定。实际采取的大多是电流检测电阻 NPN晶体管对基极分流的方法。图1中的R3是电流检测电阻,当它上面的电压加上1N4148的导通压降(约0.8V)超过8050的导通电压时,8050导通,拉出基极电流,使得基极欠流,触发正反馈机制从而关断。
RCC的稳压是通过基极绕组的反激电压实现的。当晶体管关断,基极绕组异名端反接的的电容C2充电。C2的电压和C3的电压成比例Nb/Ns。当C2的电压超过了稳压管D8的齐纳电压,C2就流出电流,把基极电压拉低,阻止或减缓晶体管导通,从而间接控制了C3上的输出电压。
是否为非正版驹。 “你好,我的是盗---版的。才买100多块钱,请问有什么方法可以改善么?”非正版总会有这个或那个问题,是没有办法解决的。
答:这个比较正常,随便哪个正版的都保证不了程序一直都是稳定的~~~ 你可以关闭软件,重新打开再汇总试试看~~ 如果还是不行,那么你可以复制一份工程到另一个盘符,然后删除掉非彩色部分的文件,重新打开汇总...
有专门做地震安全性评价的单位,地震局啥的,一般一个场地3-5万。
RCC由一个主开关晶体管、一个变压器和一些电阻、电容、二极管组成,并不包含集成芯片。不包含集成芯片,使得RCC的成本较采用集成芯片的电源电路为低。但随着集成电路芯片的降价(如今一个芯片的价格仅为人民币0.5元左右),RCC的成本优势已经非常弱。
传统的RCC一般采用功率三极管(BJT)作为开关管。较新的设计采用了金属-氧化物-半导体场效应管(MOSFET),以实现更低功耗以及准谐振等功能。
RCC的变压器由三个或以上的绕组组成,包含输入侧的一个主输入绕组,一个反馈绕组以及输出侧的一个或多个输出绕组。和所有的反激变换器一样,这个变压器需要承受大的直流偏磁。
辅助电路需要二极管、电阻、电容等,实现电流限制、电压限制等功能。
RCC的功率部分如同普通的反激变换器一样操作。信号和控制部分原理如下:
1.当加入输入电压Vin(电阻RG连接Tr1的基极),电流Ib流过Rb,Tr1导通,此Ib为启动电流。Tr1的collector电流Ic波形如图,一般从0开始。
2. Tr1一旦进入ON状态,transformer的P1线圈已加入输入电压Vin,因此P2线圈形成的电压为Tr1提供了基极电流,使得Tr1可以保持导通。
3. Tr1的集电极电流成斜坡状上升,直到电流为βIb,此时基极电流无法维持Tr1晶体管饱和导通,晶体管集电极--发射极之间的电压上升。而这里的电压上升使得变压器Np上的输入电压下降,更导致Ib下降。于是形成了正反馈,使得Tr1最终关闭。
4. Tr1关闭后如同其他反激变换器一样,储存在变压器内部的能量流到次级电容里,为负载供电。在变压器内部能量未释放完时,基极一直被次级反射来的负电压下拉,晶体管保持关闭。变压器内部能量释放完毕后,电路工作状态转入第1步,形成周期性循环。
5.如果在集电极有较大电流时使用其他方法导致基极电流不足,也可以触发正反馈机制关断晶体管Tr1。这一特点常用于实现电流限制和稳压。(即在电流或电压过大时减小占空比或禁止晶体管开通)
基本的RCC电路天然有着限制峰值电流的特征。由于基极电阻的限流作用,基极电流无法超过Vin/Np*Nb/Rb,从而让集电极电流在超过βIb时触发正反馈关断机制。 实际应用中,这种限流是不准确的,因为晶体管的β离散性很大(同种型号晶体管β可以相差4倍),并且输入电压Vin不固定。实际采取的大多是电流检测电阻+NPN晶体管对基极分流的方法。图中的R3是电流检测电阻,当它上面的电压加上1N4148的导通压降(约0.8V)超过8050的导通电压时,8050导通,拉出基极电流,使得基极欠流,触发正反馈机制从而关断。
RCC的稳压是通过基极绕组的反激电压实现的。当晶体管关断,基极绕组异名端反接的的电容C2充电。C2的电压和C3的电压成比例Nb/Ns。当C2的电压超过了稳压管D8的齐纳电压,C2就流出电流,把基极电压拉低,阻止或减缓晶体管导通,从而间接控制了C3上的输出电压。
荧光灯条纹不稳定性的实验研究
荧光灯条纹不稳定性的实验研究 低气压辉光放电中的条纹不稳定性现象最早于 19 世纪 30 年代由麦克尔 ·法拉第( Michael Faraday ) 首先发现。此后,相关的研究工作在国际上一直处于比较热门的行列。 1968 年,佩克雷克( Pekarek ) 总结了前人对稀有气体中的条纹不稳定性的研究,给出了条纹不稳定性的色散关系曲线。随着研究的不断 深入,电子动力学在条纹不稳定性的研究中扮演了越来越重要的角色。岑丁( Tsendin )利用非局域场近 似和“黑墙假设 ”,求得了电子的玻尔兹曼方程( Boltzmann Equation )的一个解析解,该解析解是空间 的周期函数。他提出,高能电子的非局域性是造成放电出现条纹不稳定性的原因。格鲁伯夫斯基 (Golubovskii )深化了岑丁的研究,并通过理论以及实验手段,进一步对稀有气体中的条纹不稳定性的 成因进行了研究。 2006 年
色散缓变光纤耦合器中的调制不稳定性
用奇偶超模对光纤耦合器的耦合模方程重写.讨论了当输入条件使奇偶超模其中之一被单独激发时,色散缓变光纤耦合器中的调制不稳定性,结合调制不稳定性,分析了色散缓变光纤耦合器在准连续波条件下的非线性效应.结果表明:在正常和反常色散区存在新型调制不稳定性.当满足一定条件时,在色散缓变光纤耦合器中传播的准连续波光束可以分解成脉冲序列,并且脉冲几乎不展宽,由此可以分离和提取稳定的超短脉冲;当输入功率一定时,增益谱随着传输距离的改变,形态基本保持不变;当传输距离一定时,增益谱随着输入功率的增强,宽度变宽,强度增强.