选择特殊符号
选择搜索类型
请输入搜索
根据利用量子现象和光子发射机制的不同,量子雷达主要可以分为以下3个类别:
一是量子雷达发射非纠缠的量子态电磁波。其探测过程为利用泵浦光子穿过(BBO)晶体,通过参量下转换产生大量纠缠光子对,各纠缠光子对之间的偏振态彼此正交,将纠缠的光子对分为探测光子和成像光子,成像光子保留在量子存储器中,探测光子由发射机发射经目标反射后,被量子雷达接收,根据探测光子和成像光子的纠缠关联可提高雷达的探测性能。与不采用纠缠的量子雷达相比,采用纠缠的量子雷达分辨率以二次方速率提高。
二是量子雷达发射纠缠的量子态电磁波。发射机将纠缠光子对中的信号光子发射出去,“备份”光子保留在接收机中,如果目标将信号光子反射回来,那么通过对信号光子和“备份”光子的纠缠测量可以实现对目标的检测。
三是雷达发射经典态的电磁波。在接收机处使用量子增强检测技术以提升雷达系统的性能,目前,该技术在激光雷达技术中有着广泛的应用。中电14所实际上应用的是上述三种模式中的一种。
目前,经典雷达存在一些缺点,一是发射功率大(几十千瓦),电磁泄漏大;二是反隐身能力相对较差;三是成像能力相对较弱;四是信号处理复杂,实时性弱。针对经典雷达存在的技术难点,量子信息技术均存在一定的技术优势,可以通过与经典雷达相结合,提升雷达的探测性能。
首先,量子信息技术中的信息载体为单个量子,信号的产生、调制和接收、检测的对象均为单个量子,因此整个接收系统具有极高的灵敏度,即量子接收系统的噪声基底极低,相比经典雷达的接收机,噪声基底能够降低若干个数量级。再忽略工作频段、杂波和动态范围等实现因素,则雷达作用距离可以大幅提升数倍甚至数十倍。从而大大提升雷达对于微弱目标,甚至隐身目标的探测能力。
其次,量子信息技术中的调制对象为量子态,相比较经典雷达的信息调制对象,量子态可以表征量子“涨落变化”等微观信息,具有比经典时、频、极化等更加高阶的信息,即调制信息维度更高。从信息论角度出发,通过对高维信息的操作,可以获取更多的性能。对于目标探测而言,通过高阶信息调制,可以在不影响积累得益的前提下,进一步压低噪声基底,从而提升噪声中微弱目标检测的能力;从信号分析角度出发,通过对信号进行量子高阶微观调制,使得传统信号分析方法难以准确提取征收信号中调制的信息,从而提升在电子对抗环境下的抗侦听能力。综合而言,通过量子信息技术的引入,通过量子化接收,原理上可以有效降低接收信号中的噪声基底功率;通过量子态调制,原理上可以增加信息处理的维度,一方面可以提升信噪比得益,另一方面可以降低发射信号被准确分析和复制的可能性,从而在目标探测和电子对抗领域具有广阔的应用潜力。
据专家披露,其实相关研究已经做了很多年,之前做的量子成像方面的工作,并没有在单光子水平上,而是用光的高阶关联特性实现的成像,确实有突破云雾等的特点,但成像过程还是比较复杂的,流程也较漫长,实用性还有待发展,而且很难说叫量子成像。可以说,本次实现的技术突破是多年技术积累的结果,并非为了追赶近期“墨子”号掀起的量子热。
本次技术突破属于量子探测领域,特点就是突破测量方法的经典极限(例如光的衍射极限等),是业界比较看好的技术(诚然,也有学者对此有异议)。世界各国对此也都有研究,而且技术发展较快——2008年美国麻省理工学院的Lloyd教授首次提出了量子远程探测系统模型—量子照射雷达,从理论上证明了量子力学可以应用于远程目标探测。2012年,东京大学的Nakamura和Yamamoto采用超导回路,取得了微波频段单光子态和压缩态产生与接收技术的新突破。2013年,意大利的Lopaeva等首次用实验方法实现了量子照射雷达,该实验基于光子数关联,验证了Lloyd提出的量子照射雷达模型探测在高噪声及高损耗时依然有目标探测能力;2015年,德国亚琛工业大学的Shabir Barzanjeh等对微波量子照明探测进行了深入研究。
雷达所起的作用和眼睛相似,当然,它不再是大自然的杰作,同时,它的信息载体是无线电波。 事实上,不论是可见光或是无线电波,在本质上是同一种东西,都是电磁波,传播的速度都是光速C,差别在于它们各自占据的波...
雷达及其分类雷达(Radar,即 radio detecting and ranging),意为无线电搜索和测距。它是运用各种无线电定位方法,探测、识别各种目标,测定目标坐标和其它情报的装置。在现代军...
用过,效果还不错
雷达组成及原理
雷达的组成及其原理 课程名称:现代阵列并行信号处理技术 姓名:杜凯洋 学号: 2015010904025 教师:王文钦教授 一.简介 雷达( Radar,即 radio detecting and ranging),意为无线电搜索和测距。它 是运用各种无线电定位方法, 探测、识别各种目标, 测定目标坐标和其它情报的 装置。在现代军事和生产中, 雷达的作用越来越显示其重要性, 特别是第二次世 界大战,英国空军和纳粹德国空军的“不列颠”空战,使雷达的重要性显露的非 常清楚。雷达由天线系统、发射装置、接收装置、防干扰设备、显示器、信号处 理器、电源等组成。其中,天线是雷达实现大空域、多功能、多目标的技术关键 之一;信号处理器是雷达具有多功能能力的核心组件之 雷达种类很多,可按多 种方法分类: (1)按定位方法可分为:有源雷达、半有源雷达和无源雷达。 (2)按装设地点可分为;地面雷达、舰载雷达、
量子一词来自拉丁语(quantus),意为"多少",代表"相当数量的某事"。在物理学中常用到量子的概念,量子是一个不可分割的基本个体。例如,一个"光的量子"是光的单位。而量子力学、量子光学等等更成为不同的专业研究领域。
其基本概念是所有的有形性质也许是"可量子化的"。"量子化" 指其物理量的数值会是一些特定的数值,而不是任意值。例如, 在(休息状态)的原子中,电子的能量是可量子化的。这能决定原子的稳定和一般问题。
在20世纪的前半期,出现了新的概念。许多物理学家将量子力学视为了解和描述自然的的基本理论。
量子网络是一类遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置。当某个装置处理和计算的是量子信息,运行的是量子算法时,它就是量子网络。量子网络的概念源于对可逆计算机的研究。研究可逆计算机的目的是为了解决计算机中的能耗问题。
将一个粒子的量子信息发向远处的另一个纠缠粒子,该粒子在接收到这些信息后,会成为原粒子的复制品。一个粒子可以传递有限的信息,而亿万个粒子联手,就形成量子网络。
量子理论研究者很早就发现了开启量子通讯的钥匙--量子纠缠。量子纠缠描述了这样一个现象:两个微观粒子位于宇宙空间中的两边,无论相隔多远,只要这两个粒子彼此处于量子纠缠,则通过改变一个粒子量子纠缠的量子状态,就可以使非常遥远的另一个粒子状态也发生改变,信号超越了时空的阻隔,直接送达了另一个粒子那里。
这种神奇的现象和我们生活中所说的"心灵感应"很类似,两个相距遥远的人不约而同地想去做同一件事,好像有一根无形的线绳牵着两个人。 这种理论上的超过通讯方式激起了量子科学家们的雄心壮志,他们试图建立起比互联网快千万倍的量子网络。
量子纠缠 具有量子纠缠现象的成员系统们,在此拿两颗以相反方向、同样速率等速运动之电子为例,即使一颗行至太阳边,一颗行至冥王星,如此遥远的距离下,它们仍保有特别的关联性(correlation);亦即当其中一颗被操作(例如量子测量)而状态发生变化,另一颗也会即刻发生相应的状态变化。如此现象导致了"鬼魅似的远距作用"(spooky action-at-a-distance)之猜疑,仿佛两颗电子拥有超光速的秘密通信一般,似与狭义相对论中所谓的局域性(locality)相违背。这也是当初阿尔伯特·爱因斯坦与同僚玻理斯·波多斯基、纳森·罗森于1935年提出以其姓氏字首为名的爱波罗悖论(EPR paradox)来质疑量子力学完备性之缘由
根据应用途径,量子通信可分为:量子密码通信、量子远程传态和量子密集编码等。按其所传输的信息内容分为是经典通信和量子通信而分为两类。前者主要传输量子密钥,后者则可用于量子隐形传态和量子纠缠的分发。