选择特殊符号

选择搜索类型

热门搜索

首页 > 百科 > 建设工程百科

正激电路

正激电路拓补结构多种多样,大致可以这样分类:根据驱动管子个数,可分为单管正激,双管正激;根据磁芯复位技术的不同,可分为辅助磁通绕组复位,LCD 缓冲网络复位,RCD 箝位复位,有源箝位复位;根据拓补结构的形式不同,可分为单个变换器和串、并组合变换器。
在各种间接直流变流电路中,正激 DC/DC 变换器具有电路拓扑结构简单,输入输出电气隔离,电压升、降范围宽,易于多路输出等优点,因此被广泛应用于中小功率电源变换场合,尤其在供电电源要求低电压大电流的通讯和计算机系统中,正激电路更能显示其优势。但是在开关关断期间,高频变压器必须磁芯复位,以防变压器铁心饱和,因此必须采用专门的磁复位电路。正是由于磁复位技术的多样性,以及软开关技术的发展,导致正激电路拓补结构的多样性。随着电力电子技术的发展,各种新的正激电路拓补结构不断出现,不同的拓补结构已有二十余种。  

正激电路基本信息

正激电路研究方向

正激电路拓补结构的研究比较成熟,各种电路拓补结构似乎也很完备,因此它的一个发展方向就是顺应集成电路的发展,向少元件、少损耗、少 EMI、小型化、轻型化的方向发展;另外,研制满足微电子系统的低电压、大电流要求的变换器,以及运用组合变换方式,研制满足高电压、大电流应用场合的高效、高可靠性变换器也是一个发展方向。2100433B

查看详情

正激电路造价信息

  • 市场价
  • 信息价
  • 询价

电路

  • HBA 产品编号:39R6525 单口 4Gb, PCI-E FC HBA, Qlogic
  • 13%
  • 广州昊群计算机科技有限公司
  • 2022-12-07
查看价格

电路

  • HBA 产品编号:42D0485 Emulex 8GB FC Single-Port PCI-E HBA for IBM System x
  • 13%
  • 广州昊群计算机科技有限公司
  • 2022-12-07
查看价格

门机电路

  • 品种:门机电路板;规格:DMC;编码:R27C176A50;产地:上海;
  • 永大
  • 13%
  • 北京大东创业电梯有限公司
  • 2022-12-07
查看价格

电路

  • HBA 产品编号:42C2069 4GB 光纤通道卡 PCI-E (HBA卡)
  • 13%
  • 广州昊群计算机科技有限公司
  • 2022-12-07
查看价格

电路控制板及软件

  • 通信主板GPS
  • 13%
  • 广东京安交通科技有限公司
  • 2022-12-07
查看价格

  • 机械用
  • kW·h
  • 阳江市2022年10月信息价
  • 建筑工程
查看价格

  • 机械用
  • kW·h
  • 阳江市2022年9月信息价
  • 建筑工程
查看价格

  • 机械用
  • kW.h
  • 阳江市阳西县2022年9月信息价
  • 建筑工程
查看价格

  • 机械用
  • kW.h
  • 阳江市海陵岛区2022年9月信息价
  • 建筑工程
查看价格

  • 机械用
  • kW·h
  • 潮州市饶平县2022年8月信息价
  • 建筑工程
查看价格

电路改造

  • 满足项目设备电路应用,敷设6平方50米220V缆,含配控制开关、插座等;
  • 1项
  • 3
  • 中档
  • 含税费 | 含运费
  • 2021-12-08
查看价格

电路游戏1

  • 展项展示导体物质和非导体物质的导性区别.观众将不同物料放在监测电路中,有些能够导,有些不能,把能够导的物料组成电路,使灯泡发光.
  • 1项
  • 1
  • 中高档
  • 不含税费 | 含运费
  • 2022-10-24
查看价格

电路游戏1

  • 展项展示导体物质和非导体物质的导性区别.观众将不同物料放在监测电路中,有些能够导,有些不能,把能够导的物料组成电路,使灯泡发光.
  • 1项
  • 1
  • 高档
  • 不含税费 | 含运费
  • 2022-09-14
查看价格

电路游戏1

  • 展项展示导体物质和非导体物质的导性区别.观众将不同物料放在监测电路中,有些能够导,有些不能,把能够导的物料组成电路,使灯泡发光.
  • 1项
  • 1
  • 中档
  • 不含税费 | 含运费
  • 2022-08-15
查看价格

电路防雷器

  • 电路防雷器
  • 7个
  • 1
  • 柏斯顿
  • 中高档
  • 含税费 | 含运费
  • 2021-01-14
查看价格

正激电路应用

磁芯复位电路

正激电路磁芯复位技术主要有:辅助磁通绕组复位,LCD 箝位复位,RCD 箝位复位,有源箝位复位。

辅助磁通绕组复位是一种传统的磁芯复位方法,它增加了一个附加线圈,在开关管关断的时候,磁化能量通过辅助磁通绕组回馈到电源,磁化能量无损。但是变压器需要增加一附加线圈,绕制难度加大,同时体积也增大,而且,开关关断后,变压器的漏感将导致大的关断尖峰电压,需要附加抑止尖峰电压电路。占空比不能超过0.5,不适合大功率输出场合。

RCD 箝位复位电路,开关管关断后,磁化能量一部分转移到开关管并联电容 Cs 中,一部分消耗在箝位电阻 R 上。与辅助磁通绕组复位相比,RCD 箝位复位电路结构简单,开关管关断电压箝位在 Uc Uin,不会出现尖峰电压,且占空比可以大于 0.5,输入电压范围可以很宽。它的缺点是大部分磁化能量消耗在箝位电阻 R 中,因此适合于廉价、效率要求不太高的功率变换场合。

LCD 缓冲网络复位电路,开关管关断后,磁化能量存储在箝位电容 Cc 中,开关管关断电压箝位在 2Uin,Lc 中能量无损地回馈到电源。LCD 箝位复位电路结构简单,开关管关断电压箝位固定,避免了尖峰电压;而且不存在耗能元件,属于无损复位,提高了电路变换效率;而且电路地可靠性高,通过选取适合地箝位电路元件值,可以保证电路工作在较宽地负载范围内,且箝位电容 Cc 的电压值、电感 Lc 的电流峰值不改变。占空比最大为 0.5,输入电压范围受限,因此适合于中等功率高效变换场合。

查看详情

正激电路常见问题

查看详情

正激电路文献

SABER当中双管正激主电路参数设置 SABER当中双管正激主电路参数设置

SABER当中双管正激主电路参数设置

格式:pdf

大小:12KB

页数: 1页

SABER 当中双管正激主电路参数设置 在今天的文章中将为大家带来使用 SABER 的控制环路的设计以及主 电路参数的详细设置,感兴趣的朋友快来看一看其中包含了那些知识点吧。 控制环路的设计方法 首先是控制环路上的设计方法,系统回路为开环 BODE 在剪切频率处幅 值斜率为 -20dB/dec,且至少有 45°的相位裕度。控制环路的设计步骤如下: 1、根据应用要求设计主电路。 2、由 SABER 仿真器得出主电路的 BODE3、根据实际要求和限制条件 确定剪切频率 ωc ,对电源产品,剪切频率通常为开关频率的 1/4 或者 1/5。 4、根据系统稳态精度的要求及剪切频率决定补偿放大器的类型和各频 率点。使低频段增益高,一般电源产品的低频段设计成 I 型系统,以保证稳态 精度 ;中频段带宽处的斜率为 -20dB/dec,且有足够的相位裕度(即 y》 45°) ;高

推挽正激及其软开关电路的研究与实现 推挽正激及其软开关电路的研究与实现

推挽正激及其软开关电路的研究与实现

格式:pdf

大小:12KB

页数: 72页

推挽正激及其软开关电路的研究与实现

正激简介

一种开关电源技术

正激式开关电源是指使用正激高频变压器隔离耦合能量的开关电源,与之对应的有反激式开关电源。

正激具体所指当开关管接通时,输出变压器充当介质直接耦合磁场能量,电能转化为磁能,磁能又转化为电能,输入输出同时进行。

正激式开关电源中结构稍复杂,但输出功率比反激式开关电源大了许多,所以得到广泛应用。

优点: 功率比反激式开关电源大,输出变压器利用率高,适用于100W-300W的开关电源。

缺点: 需要增加反电动势绕组,或拓补驱动,次级多加1个整流电感,成本高.2100433B

查看详情

放大器自激自激

自激的检验

检查放大器是否出现自激振荡,可以把放大器输入端对地短路,用示波器(或交流毫伏表)接在放大器输出端进行观察,自激振荡的频率一般比较高或极低,而且频率随着放大器电路参数的不同而变化(甚至拨动一下放大器内部导线的位置,频率也会改变)。振荡波形一般是比较规则的,而且幅度也较大,往往会使三极管处于饱和或截止状态。

自激的消除

高频自激振荡主要是由于安装、布线不合理引起的。例如输入线和输出线靠得太近,产生正反馈作用。因此,安装时,元器件布置要紧凑、缩短连线的长度,或进行高频滤波或加入负反馈,以压低放大器对高频信号的放大倍数或移动高频信号的相位,从而抑制自激振荡。

低频自激振荡是由于放大器各级电路共用一个直流电源引起的。因为电源总有一定的内阻,特别是电池用得时间太长或稳压电源质量不高,使得电源内阻比较大时,则会引起输出级接电源处的电压波动,此电压波动通过电源供电回路作用到输入级接电源处,使得输入级输出电压相应变化,经数级放大后,波形更厉害,如此循环,就会造成振荡。最常用的消除方法是在放大器各级电路之间加入"电源去耦电路",以消除级间电源波动的互相影响。

查看详情

单端反激电路在逆变电源中的应用

众所周知,由电池供电的逆变电源通常都由两级组成,前级DC/DC电路将电池电压变换成直流约350V 电压,后级DC/AC电路将直流350V电压变换为交流220V电压。在这类逆变电源中,前级DC/DC电路一般供电电压较低(12V、24V或 48V),输入电流较大,功率管导通压降高、损耗大,所以电源效率很难提高。其电路形式有:单端反激、单端正激、双管正激、半桥和全桥等,对于中小功率(约0.5~1kW)而言,单端反激电路具有一定优势,如:电路简单、控制方便、效率高等。本文就将以24V电池供电,输出350V/1kW为例,解析单端反激电路在逆变电源前级DC/DC电路中的应用。

常规单端反激电路结构

常规单端反激电路结构如图1所示,该电路的缺点在于功率管VT截止时,变压器初级的反峰能量,被VD1、C 1和R 1组成的吸收电路消耗掉;而且在输出功率相同的情况下,功率管通过电流(相对于多管并联)大,导通压降高,损耗大,所以效率和可靠性较低。

图1 常规单端反激电路结构

多管并联的单端反激电路结构

如图2所示,该电路的特点是,主功率电路采用4只功率管并联,每只功率管通过的电流为单管应用时的1/4(假定4只功率管参数一致),则功率管的导通压降也 应为单管应用时的1/4.根据计算,在输出550W时,理论上,4管并联比单管可减小通态损耗约20W,提高效率近3个百分点。

图2 4只功率管并联主功率电路

采用能量回馈技术的单端反激电路结构

采用能量回馈技术的单端反激电路结构如图3所示,其主要波形如图4所示。在本电路中,用电容C 2、电感L 1、二极管VD1和VD2组成变压器初级反峰吸收电路,可使大部分反峰能量回馈到输入电容C 1上,减少了能量损耗,提高了电路效率。

图3 初级反峰吸收电路

图4 初级反峰吸收电路主要波形

其工作原理如下:

(1)t 0~t 1阶段:t 0时刻功率管截止,变压器初级电感L 、漏感L K、电容C 2和功率管输出电容C 0开始谐振,并很快使C 2电压达到U 0(N 1/N 2),随后次级二极管导通,初级电压被钳位到U 0(N 1/N 2),初级电感L 退出谐振,到t 1时刻I K为0,同时C 2和C 0上电压达到最大值,即开关管电压U S达到最大值(U IN+U C2MXA)。

(2) t 1~t 2阶段:在L K、C 2、C 0继续谐振,同时电感L 1参与谐振,C 2、C 0给输入电容C 1回馈能量,并且给L 1补充能量,到t 2时刻谐振停止,C 2电压又下降到U 0(N 1/N 2)。

(3)t 2~t 3阶段:t 2时刻开始,电感L 1给输入电容C 1回馈能量。C 2电压被钳位在(N 1/N 2)U 0、C 0即开关管上电压为U IN+(N 1/N 2)U 0,均保持不变,到t 3时刻,L 1中能量释放完毕。

(4)t 3~t 4阶段:开关管完全截止,C 2电压、C 0电压(即开关管电压)继续保持不变。

(5)t 4~t 5阶段:t 4时刻功率管导通,其电压U S开始下降,C 0开始通过开关管放电,并很快放完毕(全部损耗在功率管上);C 2和L 1开始谐振,即把C 2中的能量转移到L 1中,在t 5时刻L 1中电流达到最大值,功率管完全导通。

(6)t 5~t 6阶段:t 5时刻L 1通过VD1和VD2给输入电容C 1回馈能量,并给C 2充电到-U IN,到t 6时刻L 1中能量释放完毕。

(7)t 6~t 7阶段:该阶段功率管继续处于完全导通状态。

以上过程形成一个完整工作周期,可以看出,变压器漏感中的能量大部分被回馈到输入电容C 1中(C 0中有部分能量被消耗掉),所以电源效率得到提高。

主要器件电压电流应力计算

由图3及原理分析,可得到如下计算公式:

其中:U SMAX即U C0MAX为功率管VT1~VT4所承受的最大电压应力:

U INMIN为输入电压最小值(取21V);U 0为输出电压(取350V);N 1、N 2为变压器初次级匝数(取15匝和117匝);△U C2由漏感引起的尖峰电压;I PK为漏感即初级峰值电流;L K为初级漏感(取0.4μH);C 2为外接电容(取30000pF);C 0为VT1~VT4输出电容之和(取4000pF);I PAV为功率管导通期间总电流平均值;η为电源效率(取92%);D MAX为最大占空比(取0.7);△I p为开关管导通期电流变化量;t ONMAX为开关管最大导通时间(取23μs);L为变压器初级电感值(取38μH);I L1MAX为L 1(取0.5mH)中通过的最大电流;P LK为漏感回馈到输入端的能量;f为功率管开关频率(取30kHz)。

由以上(1)~(6)式推导和化简,可得出下式:

由(7)~(11)式可计算出功率管、电感L 1所承受的电流电压应力(输出功率550W时)以及反峰吸收电路回馈到输入端的能量:

I PK=47A;U SMAX=188V;I L1MAX=1.5A;P LK=13.25W

同时由(7)~(11)式还可以看出:

(1)若要减小开关管电流应力I PK,则应增加占空比D和变压器初级电感量L ;

(2)若要减小开关管电压应力U SMAX,则应减小变压器初级漏感L K,同时增加C 2值(C 0的值由功率管参数决定);

(3)若要减小电感L 1中最大电流I L1MAX,则应增大电感L 1的电感量;(4)采用反峰吸收电路后,节省能量13.25W,可提高电源效率约2个百分点。

由以上计算可知,4只功率管额定电流至少应大于50A,考虑到功率管参数的差异性,其导通电流不完全相等,并且一般要留一定的安全裕量,所以,实际应用每只功率管额定电流值应大于50A,通态电阻愈小愈好,而耐压最好大于250V。

根据如下公式,可出计算出二极管VD0所承受的电压应力U D0、电流应力I SK:

由U DO=U 0+U INMAXN 2/N 1

得:U DO=584V

由I PKN 1=I SKN 2

得:I SK=6A

其中:I SK为次级峰值电流值。

一般要留一定的安全裕量,所以,而选用二极管额定电压应大于800V,额定电流应大于20A(考虑到过流、短路等因素)。

两路单端反激并联电路结构

若要增加输出功率,采用如图5并联结构,该电路结构可输出功率约1.1kW,用一只SG3525控制即可。

图5 两路单端反激并联电路结构

试验结果

由两路单端反激并联组成的逆变电源前级DC/DC电路(见图5),输出功率约1.1kW,试验结果如表1所示。

表1 前级DC/DC试验结果

由上述DC/DC电路组成的1kVA逆变电源,输出AC220V50Hz正弦波,试验结果如表2所示,该电源体积320×200×60mm3。

查看详情

相关推荐

立即注册
免费服务热线: 400-888-9639