选择特殊符号
选择搜索类型
请输入搜索
正弦螺线是一种特殊曲线,指极坐标方程为
正弦螺线
(1)当n=-2时为等边双曲线;
(2)当n=-1时为直线;
(3)当n=-1/2时为抛物线;
(4)当n=-1/3时为契尔恩豪森三次曲线;
(5)当n=1/2时为心脏线;
(6)当n=1时为圆;
(7)当n=2时为伯努利双纽线。
图2上画出n=3,4,3/5时的正弦螺线 。
阿基米德螺线是实践中常用的一种曲线。动点在一直线上做匀速运动,而这条直线又围绕着自己上面的一个定点作匀速转动的动点的轨迹称为阿基米德螺线,也叫等速螺线或平面螺线。它的极坐标方程为:
阿基米德在其《螺线》(On Spirals) 一书中引进了在极坐标ρ与θ之下的平面螺线ρ=aθ(如图3所示),其绕线不在同一平面上。据说,阿基米德螺线最初是由阿基米德的老师柯农(欧几里德的弟子)发现的。柯农死后,阿基米德继续研究,又发现许多重要性质,因而这种螺线就以阿基米德的名字命名了。为解决用尼罗河水灌溉土地的难题,它发明了圆筒状的螺旋扬水器,后人称它为“阿基米德螺旋”。除了杠杆系统外,值得一提的还有举重滑轮、灌地机、扬水机以及军事上用的抛石机等。被称作“阿基米德螺旋”的扬水机至今仍在埃及等地使用。一些喷淋冷却塔所用的螺旋喷嘴喷出喷淋液的运动轨迹也为阿基米德螺线。
对数螺线是一种特殊曲线。指在极坐标系中,极半径ρ的对数与极角θ的比为常数的点M(ρ,θ)的轨迹。它的极坐标方程为
从植物嫩枝的顶端往下,叶子大致上是按对数螺线排列的,这样能使采光面积达到最大;在古生物的研究中,也应用了这种曲线。对数螺线上任一点的切线,与切点的矢径相交成固定的角。这一性质在机械上有广泛的应用。如果旋转的切削刀沿此曲线的弧运动,就可保持固定的切削角,这种刀已在锄草机中使用。为了制造的方便,对数螺线的短弧,可以用阿基米德螺线的短弧近似代替。
双曲螺线,也称反螺线,是一种特殊曲线,是阿基米德螺线关于极点的反演图形。它是极径和极角成反比例的动点轨迹。双曲螺线的方程是:
双曲螺线
螺线,是一类特殊曲线。它是切向量与一个固定的方向成定角的曲线。曲线为一般螺线的充分必要条件是它的挠率与曲率之比为常数,这类特殊曲线在力学工程技术中有着广泛的应用。螺线可分为螺旋线(非平面曲线)及平面螺线。
在空间,一个动点M沿直线L作匀速直线运动,同时又以等角速度绕同平面的轴线Oz旋转,M的轨迹是一条空间(非平面)曲线,称为螺旋线。它分为左旋与右旋两种。螺旋线是绕在圆柱面或圆锥面上的曲线,而它的切线与定直线(曲面的母线)的交角,是固定不变的。
对于平面螺线,是指在平面极坐标系中,如果极径ρ随极角θ的增加而成比例增加(或减少),这样的动点所形成的轨迹。典型的平面螺线有正弦螺线、阿基米德螺线、对数螺线、双曲螺线等 。
1.两螺旋线上对应点间的距离 。 2.两螺纹间的距离。 3.两螺旋焊缝简的距离 如果带电粒子进入均匀磁场B时,其速度v与B之间成θ角,则粒子将作螺旋运动。而粒子在磁场中回转一圈所前进的距离叫做螺距(h...
在高等数学部分不考的章节包括:空间解析几何与向量代数、三重积分、曲线积分与曲面积分、曲率等。最好参考考研数学大纲复习,既权威又有重点。
真空螺旋管耳机价格是多少?325螺旋管亦称为螺线筒或螺线体吗?
现在真空螺旋管耳机价格是一件150元左右,Wisebrave艾亚系列防辐射单边入耳式这款耳机现在卖的挺不错的,耳塞螺旋管真空空气导管特工弹簧手机耳机的市场价大概是110元左右。
对数螺线在机械设计与制造工程中的应用
在给出对数螺线定义及其特有性质的基础上,以对数螺线在曲线偏心夹紧机构设计、圆楔面联结及铲齿成形刀具等方面的应用为例,阐明了它在机械设计与制造工程中的许多领域,存在着无比优越的应用前景。
分段保护超导螺线管磁体失超过程的过电压
超导磁体失超过程的过电压准确分析是失超保护系统设计的基础。对于分段保护的超导螺线管磁体,在传统椭球形正常区失超传播模型的基础上,将3维温度计算结果映射到1维导线方向上,确定沿导线的温度分布,进而计算出各匝电阻。将线圈看作以匝为单位的电阻和电感组成的电路,计算出沿导线的电阻电压、电感电压以及合电压瞬态分布,较准确地估计了失超过程中最大对地电压、层间电压和匝间电压。利用该方法对某分段保护的螺线管磁体进行了计算,获得了失超过程中磁体内部过电压;发现磁体内部的电压分布由方向相反的电感电压和电阻电压共同决定;以单段正常区电阻电压作为该磁体对地电压过于保守。
阿基米德螺线是实践中常用的一种曲线。动点在一直线上做匀速运动,而这条直线又围绕着自己上面的一个定点作匀速转动的动点的轨迹称为阿基米德螺线,也叫等速螺线或平面螺线。它的极坐标方程为:
阿基米德在其《螺线》(On Spirals) 一书中引进了在极坐标ρ与θ之下的平面螺线ρ=aθ(如图1所示),其绕线不在同一平面上。据说,阿基米德螺线最初是由阿基米德的老师柯农(欧几里德的弟子)发现的。柯农死后,阿基米德继续研究,又发现许多重要性质,因而这种螺线就以阿基米德的名字命名了。为解决用尼罗河水灌溉土地的难题,它发明了圆筒状的螺旋扬水器,后人称它为“阿基米德螺旋”。除了杠杆系统外,值得一提的还有举重滑轮、灌地机、扬水机以及军事上用的抛石机等。被称作“阿基米德螺旋”的扬水机至今仍在埃及等地使用。一些喷淋冷却塔所用的螺旋喷嘴喷出喷淋液的运动轨迹也为阿基米德螺线。
对数螺线是一种特殊曲线。指在极坐标系中,极半径ρ的对数与极角θ的比为常数的点M(ρ,θ)的轨迹。它的极坐标方程为
从植物嫩枝的顶端往下,叶子大致上是按对数螺线排列的,这样能使采光面积达到最大;在古生物的研究中,也应用了这种曲线。对数螺线上任一点的切线,与切点的矢径相交成固定的角。这一性质在机械上有广泛的应用。如果旋转的切削刀沿此曲线的弧运动,就可保持固定的切削角,这种刀已在锄草机中使用。为了制造的方便,对数螺线的短弧,可以用阿基米德螺线的短弧近似代替。
双曲螺线,也称反螺线,是一种特殊曲线,是阿基米德螺线关于极点的反演图形。它是极径和极角成反比例的动点轨迹。双曲螺线的方程是:
双曲螺线
螺线(Spiral),也称定倾曲线,是一类特殊曲线。它是切向量与一个固定的方向成定角的曲线。曲线为一般螺线的充分必要条件是它的挠率与曲率之比为常数,这类特殊曲线在力学工程技术中有着广泛的应用 。螺线可分为螺旋线(非平面曲线)及平面螺线。
在空间,一个动点M沿直线L作匀速直线运动,同时又以等角速度绕同平面的轴线Oz旋转,M的轨迹是一条空间(非平面)曲线,称为螺旋线。它分为左旋与右旋两种。螺旋线是绕在圆柱面或圆锥面上的曲线,而它的切线与定直线(曲面的母线)的交角,是固定不变的 。
对于平面螺线,是指在平面极坐标系中,如果极径ρ随极角θ的增加而成比例增加(或减少),这样的动点所形成的轨迹。典型的平面螺线有阿基米德螺线、对数螺线、双曲螺线等。
它主要由一准确钢制长方体—主体和固定在其两端的两个相同直径的钢圆柱体组成。其两个圆柱体的中心距要求很准确,两圆柱的轴心线距离L一般为100毫米或 200毫米两种。工作时,两圆柱轴线与主体严格平衡,且与主体相切。
图为利用正弦规测量圆锥量规的情况。在直角三角形中,sinα=H/L,式中H为量块组尺寸,按被测角度的公称角度算得。根据测微仪在两端的示值之差可求得被测角度的误差。正弦规一般用于测量小于45°的角度,在测量小于30°的角度时,精确度可达3″~5″。